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Abstract: 10 
Mechanical metamaterials offer novel properties based on local control of cell geometry and their 11 
global configuration into structures and mechanisms. Historically, these have been made as 12 
continuous, monolithic structures with additive manufacturing, which affords high resolution and 13 
throughput, but is inherently limited by process and machine constraints. To address this issue, we 14 
present a construction system for mechanical metamaterials based on discrete assembly of a  15 
finite set of parts, which can be spatially composed for a range of properties such as rigidity, 16 
compliance, chirality, and auxetic behavior. This system achieves desired continuum properties 17 
through design of the parts such that global behavior is governed by local mechanisms. We 18 
describe the design methodology, production process, numerical modeling, and experimental 19 
characterization of metamaterial behaviors. This approach benefits from incremental assembly, 20 
which eliminates scale limitations, best-practice manufacturing for reliable, low-cost part 21 
production, and interchangeability through a consistent assembly process across part types. 22 
 23 
MAIN TEXT 24 
 25 
Introduction 26 

The notion of rationally designing a material from the micro to the macro scale has been a 27 
longstanding goal with broad engineering applications. By controlling local cell properties and 28 
their global spatial distribution and arrangement, metamaterials with novel behavior can be 29 
achieved. The foundation for mechanical metamaterials comes from the study of cellular solids 30 
(1), where natural materials such as wood and bone (2), or synthetic materials such as stochastic 31 
foams, are understood as a network of closed or open cells (3). In the latter case, edges form a 32 
network of beams, and based on the connectivity of these beams and their base material, 33 
macroscopic behaviors can be predicted analytically (4). It was from this insight that the field of 34 
architected materials formed, enabling design of periodic structures with tailorable properties 35 
such as improved stiffness over foams at similar density due to higher degrees of connectivity (5).  36 
 Advances in digital fabrication, specifically, additive manufacturing, have enabled these 37 
complex designs to be realized. Seminal work demonstrated stiff, ultralight lattice materials (6), 38 
and has since been improved, resulting in mechanical metamaterials with superior stiffness and 39 
strength at ultralight densities (7) with multiscale hierarchy (8). Benefits of nanoscale features 40 
further expand the exotic property parameter space (9) and architectures featuring closed-cell 41 
plates have shown potential for approaching the theoretical limit for elastic material performance 42 
(10). Other designs seek to utilize compliance, which can be attained through internal geometric 43 
mechanisms (11), or through base materials capable of large strain (12). Internal architectures can 44 
be designed to transmit or respond to load in other non-standard ways. Auxetic metamaterials 45 
exhibit zero or negative Poisson’s ratio (13). Internal, re-entrant architectures produce contraction 46 
perpendicular to compressive loading, and expansion perpendicular to tensile loading, counter to 47 
traditional continuum material behavior (14). Chiral metamaterials exhibit handedness based on 48 
asymmetric unit cell geometry. These designs produce out of plane deformations, such as twist, in 49 
response to in plane loading (15). 50 
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 Nearly all of the aforementioned mechanical metamaterials are made with some form of 51 
additive manufacturing, most of which are summarized in (16). These processes vary widely in 52 
terms of cost, precision, throughput, and material compatibility. The lower end of the cost 53 
spectrum, such as fused deposition modeling (FDM), also tends to have lower performance. 54 
Limits of thermoplastic extrusion include layer-based anisotropy (17) and errors resulting from 55 
build angles for complex 3D geometry (18). Higher performance, and higher cost, processes such 56 
as selective laser melting (SLM) utilize materials such as stainless steel, but require non-trivial 57 
setup for particulate containment, and can suffer from layer-based anisotropy, thermal warping, 58 
and geometry irregularity (19). Some of the highest performance multi-scale metal microlattice 59 
production techniques based on lithographic and plating processes are well-studied and repeatable 60 
but are also highly specialized and labor-, time-, and cost-intensive. Polymerization, curing, 61 
plating, milling, and etching can require up to 24 hours from start to finish for sample preparation 62 
(6). Large area projection microstereolithography (LAPµSL) is capable of producing lattices with 63 
µm (10-6 m) scale features on centimeter (10-2 m) scale parts (8) with significantly improved 64 
throughput, but extension to macro-scale (>1m) structures remains out of reach, due to practical 65 
limitations in scaling these processes and their associated machines.  66 
 The largest structure that can be printed with any given process is typically limited by the 67 
build volume of the machine. Therefore, significant effort is focused on scaling up the machines. 68 
Meter-scale FDM platforms (20) and larger cementitious deposition machines (21) have been 69 
demonstrated, and coordinated mobile robots are proposed to achieve arbitrarily large work areas 70 
(22). However, there is a tradeoff between precision, scale, and cost. Commercially available two-71 
photon polymerization machines have resolution on the order of 1 µm (10-6 m), build size on the 72 
order of 100mm (10-1 m), and cost on the order of 106 $/machine (23). Macro-scale FDM 73 
machines boast build sizes of 101 m (24) but are unlikely to have better than mm (10-3 m) 74 
resolution. Thus, roughly the same dynamic range (scale/resolution) is offered, but with costs 75 
approaching 107 $/machine, we see a possible super-linear cost-based scaling of achievable 76 
dynamic range. Building large, precise machines is expensive, and due to the inherent coupling of 77 
machine performance, size, and cost, there are significant challenges for realizing macro-scale 78 
(>1m) mechanical metamaterials with high quality and low cost.  79 

An alternative approach to producing mechanical metamaterials seeks to decouple these 80 
aspects, and in doing so overcome machine-based limitations. Based on reversible assembly of 81 
discrete, modular components, this method utilizes mechanical connections to build larger, 82 
functional metamaterials and structures out of smaller, mass-producible parts. The first 83 
demonstration of this approach utilized custom wound, centimeter-scale, carbon fiber reinforced 84 
polymer (CFRP) components (25), resulting in an ultralight density lattice with improved elastic 85 
stiffness performance over then state of the art metallic microlattice (6), due to the high modulus 86 
constituent material. Following this, larger scale, octahedral voxel (volumetric pixel) building 87 
block units were made using commercial off the shelf (COTS) high modulus, unidirectional 88 
pultruded CFRP tubes connected with injection molded glass fiber reinforced polymer (GFRP) 89 
nodes, resulting in a macro-scale (>1m), high performance, reconfigurable structure system (26). 90 
Following this, entire voxel units were made with injection molding of GFRP, yielding the first 91 
truly mass-producible discrete lattice material system with low cost, best-practice repeatability, 92 
and high performance (27). Discrete assembly offers scalability and functionality not achievable 93 
with traditional methods due to process and machine limitations. 94 

In this paper, we present a construction system for mechanical metamaterials based on 95 
discrete assembly of a finite set of modular, mass produced parts. We demonstrate experimentally 96 
the desired metamaterial property for each part type, and combined with numerical modeling 97 
results, display other novel, unexpected properties. A modular construction scheme enables a 98 
range of mechanical metamaterial properties to be achieved, including rigid, compliant, auxetic 99 
and chiral, all of which are assembled with a consistent process across part types, thereby 100 
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expanding the functionality and accessibility of this approach. The incremental nature of discrete 101 
assembly enables mechanical metamaterials to be produced efficiently and at low cost, beyond 102 
the scale of the 3D printer.  103 
 104 
Results 105 

Continuum behavior from discrete parts 106 

 107 
Figure 1: Discrete mechanical metamaterial subsystem description and characterization. A) 108 
3x3x3 lattice consists of 27 individual voxels, B) Voxels consist of six individual faces, C) Faces 109 
consist of beams and joints, D) Experimental results for subsystem characterization, where we see 110 
joints (rivets + nodes) are individually stiffer and stronger than voxels, which are governed by 111 
beam properties E) Subsystem testing setups. 112 

 First, we present the discrete material construction system and show how continuum 113 
behavior is achieved through design of the parts and their relative structural performance.  Parts 114 
are designed to have their local beam properties govern global lattice behavior, resulting in an 115 
effective bulk material that behaves as if it were produced monolithically. 116 
 A lattice, or a mechanical metamaterial consisting of a periodic network of interconnected 117 
beams, can be described, and its performance predicted, analytically. We can describe lattices as 118 
stretch- or bending-dominated, based on how they resolve external forces as a function of their 119 
internal beam connectivity, which corresponds to Maxwell’s frame rigidity criteria extended to 120 
3D (5). Stretch-dominated lattices, such as the octet, have higher connectivity (Z = 12) and higher 121 
stiffness to weight than bending-dominated lattices, such as the kelvin, which have lower 122 
connectivity (Z = 4) (7). In this work we use the cuboctahedra lattice (referred to as Cuboct) 123 
geometry, which is uniquely positioned between low and high connectivity (Z = 8) yet has been 124 
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shown to have stretch-dominated behavior, in both microlattice implementation (28) and as 125 
discretely assembled vertex connected octahedra (27). 126 
 In Figure 1A-C, we show a new decomposition using face-connected cuboctahedra voxels 127 
which produces the same lattice geometry but has additional benefits to be discussed herein. 128 
Voxels are discretized into faces, which consist of beams and joints. There are two types of joints: 129 
inner-voxel joints are the points at which 6 separate faces are joined to form a voxel, and inter-130 
voxel joints provide the vertex to vertex connections between neighboring voxels along a single 131 
face. A joint consists of nodes, which are the geometric features on the part providing the 132 
fastening area, and the fasteners, which are mechanical connectors. Based on the material and 133 
geometric properties of each subsystem, local properties can be controlled to ensure proper 134 
global, continuum behavior. In this case, our lattice should behave as an interconnected network 135 
of beams. Therefore, we wish to design joints to possess significantly higher effective stiffness 136 
and strength than the beams they connect. In this way, the global effective stiffness and strength 137 
of the lattice are governed by those subsystems with the lowest relative value.  138 
 Following as-molded material characterization to calibrate analytical and numerical 139 
models (Figure S1), subsystems were then characterized in tests designed to isolate the critical 140 
performance aspects for proper system behavior. Rivets, inter-voxel nodes, individual voxels 141 
(consisting of beams and inner-voxel joints), and multi-voxel assemblies were tested. The specific 142 
goal is to quantify the degree to which voxel and multi-voxel behavior is governed by stiffness 143 
and strength properties of the beams, rather than the joints. Experimental results are shown in 144 
Figure 1D, with axial stiffness and critical load values noted.  145 
 Since each subsystem effectively acts across the same cross section (a single voxel), we 146 
can directly compare their yield strength using their observed failure loads. We see the inter-voxel 147 
node and fastener yield strengths are roughly two and four times the voxel yield strength, 148 
respectively. For axial stiffness, we treat single and multi-voxel tests as effective springs in series. 149 
A single voxel then consists of five effective springs in series: top fasteners, top nodes, voxel, 150 
bottom nodes, and bottom fasteners. For springs in series, the equivalent axial stiffness is the 151 
reciprocal of the sum of the individual spring reciprocals: 152 

1

𝑘
= 

1

𝑘



ୀଵ

 153 

𝑘ଵ ≪ 𝑘வଵ 154 
𝑘 ≈ 𝑘ଵ 155 

For large ki and small k1, we see that keq equals k1, indicating that the governing value is 156 
the lower spring stiffness. Using measured values for fasteners, nodes, and voxels, we see the 157 
experimental value for the two-voxel assembly agrees with this analytical description, and that 158 
both effective stiffness and strength are governed by voxel, and thus beam, properties. Additional 159 
details on the joint load paths and hysteresis effects are presented in the supplementary material. 160 
Under cycling the hysteresis rapidly decreased to a stable value, which for the stiffest lattice 161 
(cuboctahedral) was approximately twice the base material, corresponding to matching the 162 
hysteresis of a rigid rubber at a fraction of a percent of the density (53, 54). This can be further 163 
reduced with preloaded joints (27).  164 

 165 
 166 
 167 

 168 
  169 
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Part types 170 

 171 
Figure 2: Four types of discretely assembled mechanical metamaterials. Left to right: rigid, 172 
compliant, auxetic, and chiral. A) As-molded face parts, B) Single voxel, front view, C) 2x2x2 173 
Cube, front view, D) Single voxel, oblique view, E) 2x2x2 oblique view. Scale bars: A) 10mm, B, 174 
D) 25mm, C, E) 50mm. 175 

  176 
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Using this construction system, we present the discretely assembled mechanical 177 
metamaterials consisting of four part types: rigid, compliant, auxetic, and chiral, shown in Figure 178 
2. Six face parts (Figure 2A) are assembled to form voxels (Figure 2B), which are then assembled 179 
to form multi-voxel lattices (Figure 2C). Details of the assembly procedure and throughput metrics 180 
can be found in Supplementary materials.  181 
 Rigid voxels resolve external loading through axial beam tension and compression, resulting 182 
in elastic, followed by plastic, buckling of struts. Lattices made with these parts show near-linear 183 
scaling of effective modulus, positive Poisson ratio, and yield strength determined by geometric 184 
and manufacturing process parameters. Compliant voxels are designed with corrugated flexure 185 
beams, a motif found in flexural motion systems (29),  which resolve axial beam forces through 186 
elastic deformation of the planar flexures. Lattices made with these parts show consistent 187 
elastomeric behavior at even single voxel resolution and have a near-zero Poisson ratio. Auxetic 188 
voxels are designed as intersecting planes of re-entrant mechanisms, which expand and contract 189 
laterally under uniaxial tension and compression, respectively. Lattices made with these parts show 190 
a negative Poisson ratio through a combined action of pure mechanism and flexural beam bending. 191 
Chiral voxels are designed with an asymmetric mechanism which responds to in plane loading by 192 
producing either clockwise (CC) or counterclockwise (CCW) rotation. When interconnected in 193 
three dimensions, this produces out of plane twist in response to uniaxial tension or compression. 194 
By combining CC and CCW parts, internal mechanism frustration can be avoided, enabling 195 
improved scalability over prior art. The four lattice types and their behaviors will be described in 196 
further detail in the following subsections. 197 
 198 

 199 

  200 
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Rigid Lattice Behavior 201 

    202 
Figure 3: Rigid mechanical metamaterial. A) Characteristic unit cell voxel demonstrating beam 203 
buckling and positive transverse strain in response to compressive load, B) Experimental test 204 
setup for n = 1-4, undeformed (L), and at initial beam failure (R), C) Geometric parameters for 205 
simulations, where beam thickness t is a function of lattice pitch P, D) Effective stiffness for 206 
reduced order beam model simulation and experimental results demonstrating asymptotic 207 
behavior approaching continuum value at increasing voxel count E) Reduced order beam model 208 
simulation results for rigid and compliant lattice of 10x10x10 cube. Observable are modulus-209 
density scaling values being linear for rigid and near quadratic for compliant.  210 

The rigid lattice type exhibits relative modulus-density scaling which matches previous 211 
results in literature but does so with a novel geometric decomposition. We present experimental 212 
and numerical results for the rigid lattice type in Figure 3. The characteristic behavior of a unit 213 
cell voxel is shown in Figure 3A. The geometry is isotropic along its primary axes, and it 214 
responds to loads through axial beam tension and compression. While individual voxels are 215 
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dominated by under-constrained, mechanism behavior of the quadrilateral faces, when multiple 216 
voxels are joined, there is sufficient connectivity to provide rigidity through triangulation of 217 
neighboring voxel faces. As a result, effective modulus increases with increasing cell count, and 218 
this value eventually reaches an effective continuum value, as seen in Figure 3D.  219 

 Having established that the global behavior is governed by the beam properties, now we 220 
can correlate analytical models with experimental results for effective lattice behavior. Here we 221 
will look at effective elastic modulus E* and yield strength σy, the former corresponding to the 222 
linear portion of the stress strain curve under quasi-static loading, and the latter corresponding to 223 
the failure load divided by the specimen cross section area. Stress-strain curves for lattice 224 
specimens of cube side voxel count n = 1-4 are shown in Figure S10, where an initial linear 225 
elastic regime is followed by a non-linear elastic regime and plastic yield. Using load and 226 
displacement data, stress and strain values are calculated based on lattice specimen size. The 227 
calculated moduli are shown with numerical results in Figure 3D, in this case using the reduced 228 
order beam models as described in Materials and Methods. It can be seen that as voxel count n 229 
increases, E* approaches a continuum value depending on the beam thickness, and thus relative 230 
density of the lattice. In the case of our built lattice, voxel cubes of side voxel count n = 1-4 have 231 
effective moduli relative to the continuum approximation (horizontal line, value for 10x10x10 232 
determined numerically) of 9, 56, 73, and 89%, respectively. Discrepancy between experimental 233 
and numerical results are also calculated for specimens n  = 1-4 to be 458, 10, 6, and 3%, 234 
respectively. This can be attributed to the ratio of internal to external beams increasing as voxel 235 
count increases (Figure S7). The internal beams, which are fully constrained and behave as a rigid 236 
network, asymptotically govern the effective global behavior.  237 
 These predicted effective lattice properties over the range of effective densities are plotted 238 
relative to constituent values in Figure 3E. The slope of the curve connecting these points, plotted 239 
on a log/log chart, provides the power scaling value, which is used to analytically predict lattice 240 
behaviors at the macroscopic scale (4). Effective lattice modulus and density are related to 241 

constituent material modulus and density by  
ா∗

ா
∝  ቀ

ఘ∗

ఘ
ቁ



 , where b is 1 for stretch dominated 242 

lattices and 2 for bending dominated. We find b  = 1.01 for our rigid lattice. This scaling value 243 
had been shown previously for the monolithic (additively manufactured) cuboctahedron lattice 244 
(28) and for discretely assembled, vertex connected octahedra (27), to which we now add our 245 
novel lattice decomposition. It should be noted that these effective values are from numerical 246 
simulations, not experiment, though we direct the reader to Figure 3D and Figure 4D for 247 
agreement between experimental and numerical results.   248 
 Next, we compare experimental yield stress results with analytical predictions of local 249 
beam failure based on relative density, as a function of beam thickness t and lattice pitch P. Here, 250 
we will use experimental data from the 4x4x4 specimen, as this is closest to demonstrating 251 
continuum behavior (effective modulus is 89% predicted continuum value). Based on the load at 252 
failure and lattice material and geometry, we can determine a given beam compressive failure 253 
load to be around 88N. We determine the analytical critical beam load using either the Euler 254 
buckling formula or the Johnson parabola limit, depending on the compression member’s 255 
slenderness ratio (Figure S5). We determine our beam slenderness ratio to be 29.5, which is over 256 
the critical slenderness ratio of 19.7 (see supplementary material for complete calculation), thus 257 
we use Euler buckling formula. Because the as-molded material properties vary, we determine the 258 
critical load to range from 70 to 108 N, with the mean value of 89 N very closely approximating 259 
the experimental value. Thus, there is good correlation between both stiffness and strength based 260 
on the design of our discrete lattice material.  261 
 262 
 263 
 264 
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Compliant Lattice Behavior265 

   266 

Figure 4: Compliant mechanical metamaterial. A) Characteristic unit cell voxel demonstrating 267 
flexure spring-beam deformation and small transverse strain in response to compressive load, B) 268 
Experimental test setup for n = 1-4, undeformed (L), and at onset of non-linearity (R), C) 269 
Geometric parameters for simulations, where spring-beam amplitude a is a function of lattice 270 
pitch P, D) Effective stiffness simulation and experimental results, which show near continuum 271 
value at low voxel count for all but the smallest spring-beam amplitude designs, E) Simulation 272 
results for effective Poisson’s ratio for rigid and compliant lattice, with large spring-beam 273 
amplitudes having a value of near zero.  274 

 The compliant lattice type exhibits quadratic scaling for effective stiffness, as well as 275 
consistency across voxel counts regarding continuum behavior and elastic limit values. We 276 
present experimental and numerical results for the compliant lattice type in Figure 4. The 277 
characteristic behavior of a unit cell voxel is shown in Figure 4A. While the load paths are 278 
topologically the same as the rigid voxel, as this is a function of lattice connectivity, the 279 
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mechanism through which beams resolve these loads is different. Here, the planar-spring beams 280 
deform in combined axial and in-plane bending, as a controllable property of the compliant 281 
features we design. This produces several unique behaviors in this lattice type.  282 
 First, we can see from the experimental stress-strain curves that for similar strains, the 283 
compliant lattice shows linear elastic behavior up until the elastic limit (Figure S10-B). The stress 284 
at which this transition occurs is consistent across voxel counts, from n = 1 to n = 4. Second, the 285 
effective modulus is also consistent across voxel counts. This is confirmed by simulations using 286 
reduced order beam models, as shown in Figure 4D. Given the large range of linear to non-linear 287 
and individual to continuum behavior seen in the rigid lattice, the compliant lattice is markedly 288 
different in its consistency. This behavior is attributable to the spring-like behavior of the beams, 289 
a similar observation to analytical models for stochastic foams (30). As cube specimen side length 290 
voxel count increases, so do the number of springs acting in parallel, which produces an effective 291 
spring stiffness 𝐾 =  𝐾ଵ + 𝐾ଶ + 𝐾 … . But as spring count increases, so does effective area, 292 
both proportional to side length squared. Thus, a single voxel has the same effective modulus as a 293 
4x4x4 or an n x n x n cube. This effect is reduced as beam-spring amplitude a goes to zero, 294 
meaning it shows more asymptotic behavior similar to the rigid cuboct lattice.  295 
 Another property observed experimentally, and confirmed numerically, is a low, near-296 
zero, Poisson’s ratio. Figure 4E shows the simulated effective Poisson’s ratios for the compliant 297 
and rigid voxel. At the largest compliant amplitude, we see a value of near zero. As the amplitude 298 
a of the compliant spring feature goes to zero, the Poisson’s ratio converges to around 0.15, which 299 
is the effective value for the entire parameter range of the rigid lattice.   300 
 Finally, this lattice shows near quadratic stiffness scaling, in contrast to the near linear 301 
scaling shown by the rigid lattice, while having the same base lattice topology and connectivity as 302 
the rigid version (Figure 3E)—meaning it has bending-dominated behavior with a stretch 303 
dominated lattice geometry. The range of spring amplitudes as a function of lattice pitch P shown 304 
in Figure 3E are a = 0.05, 0.1, 0.15, and 0.2, and these have scaling values of b = 1.72, 1.89, 1.93, 305 
and 1.95, respectively. This is attributable to the localized behavior of the spring-like beams. 306 
Whereas in the rigid lattice vertically oriented beams in compression are offset by horizontally 307 
oriented beams in tension, resulting in stretch dominated behavior, here global strain is a function 308 
of local spring-beam strain, which does not produce significant reactions at beam ends opposite 309 
an external load.  310 
 311 
  312 
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Auxetic Lattice Behavior   313 

 314 

Figure 5: Auxetic mechanical metamaterial. A) Characteristic unit cell voxel demonstrating  315 
reentrant mechanism action resulting in negative transverse strain in response to compressive 316 
load, B) Experimental test setup for n = 1-4, undeformed (L), and deformed to 0.2 strain (R), with 317 
measured points on side faces circled in red, C) Reduced order beam model simulation results 318 
recreating experiments, with out of plane reentrant behavior highlighted, D) Geometric 319 
parameters for simulations, where reentrant distance d is a function of lattice pitch P, E) Effective 320 
Poisson’s ratio simulation and experimental results, F) 3D contour plot demonstrating effect of 321 
boundary conditions resulting in near zero Poisson’s ratio at edges. 322 

 323 
 324 
 The goal of the auxetic lattice type is to exhibit a controllable negative Poisson’s ratio. We 325 
present experimental and numerical results for the auxetic lattice type in Figure 5. The 326 
characteristic behavior of a unit cell voxel is shown in Figure 5A. Due to the internal architecture, 327 
which consists of interconnected, re-entrant mechanisms seen elsewhere in literature (14), the cell 328 
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responds to axial strain with a similarly signed transverse strain, resulting in a negative Poisson’s 329 
ratio ν, where 𝜈 =  −

ఢೝೌೞ

ఢೌೣೌ
 . This value can be controlled based on the re-entrant distance d as a 330 

function of lattice pitch P, as shown in Figure 5D.  331 
 Experimental results are shown in Figure 5B. Lattice specimens are cubes of voxel width 332 
n = 1-4. Specimens were compressed to identical strain values (𝜖௫ = 0.2), and transverse 333 
strain was measured by visually tracking points using fiducials mounted to the nodes along 334 
transverse faces (yz plane) parallel to the camera. Experimental data can be found in Figure S10-335 
C. These points are slightly obscured due to reduced reentrant behavior at the edges of the lattice. 336 
In Figure 5C, we show contour plots element translation in the y direction, which is out of plane 337 
and normal to the camera view. While this behavior is generally isotropic, it should be noted that 338 
the effect of the internal mechanisms is reduced at the corners/edges of the cube specimen, as 339 
shown in Figure 5F. The median effective strain values are plotted in Figure 5E over the range of 340 
parameters shown in Figure 5D. The median was chosen to reduce the influence of the boundary 341 
conditions where ν ≈ 0. The experimental Poisson’s ratios, indicated as black squares, were 342 
measured using fiducial targets and motion tracking at the points indicated in Figure 5B. 343 
 There are two main insights from this study. First is that the effective metamaterial 344 
behavior approaches a nominal continuum value as cube side length of voxel count n increases. 345 
For any re-entrant distance, this behavior can be attributed to the increase of internal mechanism 346 
architecture relative to boundary conditions. Boundary conditions increase as a function of 347 
surface area proportional to 𝑛ଶ, while internal mechanism architecture increases as a function of 348 
specimen volume proportional to 𝑛ଷ. For lower values of d, the single voxel demonstrates lower 349 
values for Poisson’s ratio (increased auxetic behavior) compared to multi-voxel specimens, but 350 
this is strongly influenced by boundary conditions, and can be considered an outlier. 351 
 The second insight is that the effective Poisson’s ratio decreases (becomes more negative) 352 
as re-entrant distance d is increased, for voxel specimens larger than n = 1. This can be 353 
understood by considering the continuous beams of the re-entrant faces as a pseudo rigid body 354 
model (PRBM), where continuous flexural mechanisms are discretized as effectively rigid links 355 
connected by planar joints with torsional stiffness (ie: a spring) (31). As d decreases, so does link 356 
length, causing less clearly defined boundaries between the rigid link and compliant spring joint 357 
(see supplementary material for further analysis). As a result, the rigid link behavior begins to 358 
dominate, causing higher overall effective stiffness and lower compliance, thus reducing the re-359 
entrant mechanism efficacy.  360 
  361 
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Chiral Lattice Behavior  362 

 363 

  364 
Figure 6: Chiral mechanical metamaterial. A) Characteristic unit cell voxel demonstrating out 365 
of plane coordinated rotation in response to compressive load, B) Simulation and experimental 366 
results for odd and even column cross sections in combination with design rules 1 and 2, C) Two 367 
chiral part types allow internal frustration to be avoided, thus enabling scalable chiral 368 
architecture, D) Design rules 1 (L) and 2 (R), which emerge from odd and even columns, 369 
respectively, E) Experimental and reduced order beam model simulation results of n = 1, 2, and 370 
3, showing total twist increases as column voxel width increases, but normalized twist per strain 371 
is lower for n = 2. 372 

  373 
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 The chiral lattice type exhibits scalable twisting behavior, which is attributable to having 374 
two chiral part types, and developing a construction logic to avoid internal frustrations. We 375 
present experimental and numerical results for the chiral lattice type in Figure 6. The 376 
characteristic behavior of a unit cell voxel is shown in Figure 6A. Based on the chirality 377 
orientation, the cell will respond to an axial strain with a macroscopic twisting in either the CW or 378 
CCW direction, in the plane normal to the direction of loading (ie: loading in z direction results in 379 
twisting in xy plane). The effective chirality can be measured as degrees twist per unit strain. 380 
 Experimental results are shown next to their numerical simulations in Figure 6E. Lattice 381 
specimens are designed as columns with 1:4 width to height ratio, similar to (15). The top half is 382 
CCW chiral lattice and the bottom half is CW chiral lattice. This produces the largest net twist at 383 
the rigid interface between the two halves and allows fixed boundary conditions at the top and 384 
bottom. Chiral columns of 1x1x4, 2x2x8, and 3x3x12 were tested in compression to identical 385 
strain values (𝜖௫ = 0.05), and twist was measured by tracking a single point at the center of 386 
the lattice. Experimental results are shown in Figure S10-D. Surprisingly, the 1x1x4 shows larger 387 
values for twist than the 2x2x8. This is attributable to internal architecture, which is also the cause 388 
of the scalable twisting found over a range of beam sizes.     389 
 Experimental values for twist per strain are shown next to reduced order beam model 390 
simulation results in Figure 6B, over a range of values for radius r of the face part as a function of 391 
lattice pitch P, with increasing column voxel width n. We observe an increased twist per axial 392 
strain for smaller values of r. This is attributable to the direct relationship between strain and twist 393 
as a function of the rotational mechanism. If we assume a unit strain is translated into an arc 394 
length s, then the rotation angle θ increases as circle radius r goes to zero, given . However, given 395 
a nominal beam thickness t, there is a limit to how small r can become before the mechanism 396 
becomes ineffective. See supplementary material for further analysis. 397 
 There are several key takeaways from this. First, we see that performance does not 398 
decrease monotonically with increasing voxel count n, but rather stabilizes to a continuum value. 399 
This is in contrast to comparable results in literature (15), and can be explained by looking more 400 
closely at the combination of CW and CCW part types. Done properly, internal frustrations—401 
when CW and CCW faces are joined they essentially cancel each other’s twist, resulting in zero 402 
twist per strain—can be avoided, as shown in (32) by using voids. In our case, we get improved 403 
twist performance by designing the internal architecture according to rules chosen to avoid 404 
frustration. This means that voxel types are directionally anisotropic, in contrast to the previous 405 
three lattice types, and further are spatially programmed to produce desired global effective 406 
behavior. Strategies for this spatial programming are shown in Figure 6C. On the left, we show a 407 
beam with odd number voxel widths. Here, design rule #1 is to orient the net face chirality 408 
(represented as arrows) away from the column interior. The experimental lattices for n=1 and n=3 409 
widths were built using rule #1. Design rule #2 was developed starting from n=2, where the 410 
orientation of interior faces is ambiguous when following rule #1. Rule #2 introduces continuous, 411 
clockwise circumferential orientation of the interior chiral faces and was used in construction of 412 
the n=2 experimental articles. Both rules are hierarchical, e.g. a rule #1 5x5 column contains a 413 
3x3 and 1x1 column in its interior as shown in Figure 6C. Simulations were performed for all 414 
column widths using both rules and show decreased twist response for rule #2, in agreement with 415 
experimental measurements. These rules were determined empirically and are not considered 416 
exhaustive but indicate the importance of rational design in this lattice type.  417 
  418 
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Discussion 419 
 In this paper, we presented a method for producing large scale mechanical metamaterials 420 
through discrete assembly of modular, mass-produced parts. We showed that bulk, continuum 421 
behavior can be achieved through design of the parts and connections, ensuring global behaviors 422 
are governed by local properties. We presented a finite set of part types which exhibit a diverse 423 
range of behaviors. Rigid lattice types show linear stiffness-to-density scaling with predictable 424 
failure modes. Compliant lattice types show quadratic stiffness-to-density scaling, as well as 425 
unique bulk behavior at low cell count, such as near-zero Poisson’s ratio. Auxetic lattice types 426 
show controllable, isotropic negative Poisson’s ratio. Chiral lattice types show scalable transverse 427 
twist in response to axial strain, which is a result of two part types being used to prevent internal 428 
architectural frustration. All four part types showed good agreement with numerical results, and 429 
their behavior is predictable through analytical means. All lattice types are made the same way: 430 
parts are injection molded and assembled to make voxels, and voxels are similarly joined to build 431 
lattices. This is a low cost, highly repeatable process that promises to enable mechanical 432 
metamaterials at macro scales (Figure S13).  433 
             There are several advantages resulting from discrete assembly which make it stand out 434 
from existing fabrication methods currently available for producing metamaterials, which include 435 
increased functionality, repairability, reconfigurability, and scalability. While this work presented 436 
mechanical metamaterials, discretely assembled electromagnetic materials have been previously 437 
demonstrated. Passive and conductive parts have been assembled into heterogeneous, functioning 438 
3D circuitry (33), and rigid, flexural, and actuated building block parts were used to assemble 439 
modular microrobots (34). These are millimeter to centimeter scale parts, and the extension of this 440 
approach to larger scales is expected to enable novel, mesoscale cellular robots. Due to the 441 
discrete nature of the construction, damaged or broken parts can be removed and replaced. This 442 
was demonstrated in prior work (27), where lattice specimens were tested to initial failure (plastic 443 
beam buckling and rupture), then unloaded, the damaged voxel unit was removed and replaced, 444 
then the specimen was tested again. Repaired specimens showed only 1.5% loss of effective 445 
stiffness and 5% loss of effective strength. Quasi-static reconfigurability was demonstrated 446 
through the assembly, disassembly, and reuse of macro-scale (225mm pitch) octahedral voxels 447 
(26). In that case, over 125 voxels were used to build a 5m bridge capable of holding several 448 
hundred kilograms, then these were reconfigured into a boat, then these were again reconfigured 449 
into a shelter. Scalability has been demonstrated in prior work, where over 4,000 injection molded 450 
octahedral voxel units were assembled into a 4.25m wingspan ultralight lattice aerostructure (35). 451 
The parts were manually assembled, with a mass and volumetric throughput that was competitive 452 
with typical mesoscale additive processes such as SLM and FDM. The machine cost and process 453 
challenges associated with making such a lattice structure with either of those methods highlights 454 
the benefits of this approach. Scaling to part counts above 103 will benefit greatly from assembly 455 
automation. Stationary gantry platforms have been fitted with end effectors for voxel transport 456 
and bolting operations (46), and mobile robots have been implemented to perform similar 457 
operations while locomoting on the lattice as they construct it (47). Stationary systems promise 458 
high throughput for a bounded work envelope, while mobile robots can be parallelized and 459 
require no global positioning due to local alignment features, offering benefits of autonomy and 460 
reliability. Automation will be critical for producing these metamaterials and structures in large 461 
quantities envisioned for commercial applications.  462 
 Injection molding as used here offers low cost and high repeatability, but it immediately 463 
limits which constituent materials can be used. Sheets of material could be used with subtractive 464 
processes such as milling, laser or waterjet cutting to make voxel face parts, though redesign of 465 
the joints would be needed. Prior work has shown successful lattice production this way, using a 466 
snap fit connection which needs a final adhesive or thermal bonding step to remove the final 467 
degrees of freedom at the joints (42-45). Natural materials such as wood can be used this way, 468 
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and in the future moldable bio-based resins with natural fibers are expected to be commercially 469 
available. Looking at scaling down our process, there are some practical limitations to both the 470 
part production and the assembly. Scaling down the parts by an order of magnitude (from 75mm 471 
cell pitch to 7.5mm cell pitch) should be possible based on current best practice micro-injection 472 
molding and existence of commercially available micro-fasteners (see supplementary material for 473 
details). Scaling down further (sub-mm cell pitch) would require novel part production and 474 
joining methods, suggesting this may be a regime where conventional additive processes are 475 
preferable. Rather than focus on absolute length scale, for our metamaterials we are concerned 476 
with the ratio of cell size to smallest characteristic system size. Given the quasi-static loading in 477 
our case, where the wavelength 2π/k goes to infinity (39), we easily achieve sub-wavelength cell 478 
size, while also demonstrating effective continuum properties as a function of local cellular 479 
architecture. Thus, the ability to compose macroscopic metamaterials blurs the boundaries 480 
between material and structure.   481 
 Finally, we limited our study to a set of four distinct behaviors, shown as separate 482 
homogeneous lattices. Comparable demonstrations of these properties exist in prior art, but each 483 
has typically entailed dedicated development, whereas here we show a single scalable system 484 
capable of achieving this range with a consistent production process based on discrete assembly. 485 
Due to this, heterogeneous lattices can be made with this approach just as easily. Heterogeneous 486 
metamaterials have been shown to offer exponential combinatorial possibilities (48), as well as 487 
the ability to realize any arbitrary elasticity tensor (49). Further, the design of novel part 488 
geometries with blends of behavior is a promising next step for use in assembling spatially graded 489 
heterogeneous structures, which is one of the main benefits sought through additive processes 490 
(51) to achieve functionality seen in natural systems (52). By offering a simple yet diverse set of 491 
parts unified with a consistent assembly method, this work represents a significant step in 492 
lowering the barrier for entry to realizing the promise of metamaterials, especially for macro-scale 493 
applications. Combined with hierarchical design tools and assembly automation, we foresee this 494 
research enabling emerging fields such as soft robotics, responsive aero- and hydrodynamic 495 
structures, and user-defined programmable materials, thereby further merging the digital and 496 
physical aspects of future engineering systems.  497 
 498 
 499 
  500 
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Materials and Methods 501 
 Injection molding and assembly: Part production and assembly details are shown in 502 
Figure S1. Parts were injection molded by Protolabs, a US-based CNC manufacturing service 503 
provider. To ensure low cost, parts were designed to be two-part moldable. While this is simple 504 
for the majority of the part, the inner-voxel tab and hole at 45 degrees required a custom designed 505 
opening, shown in Figure S1C. Parts were assembled with 3/32” diameter blind aluminum rivets, 506 
utilizing a pneumatic rivet gun. The voxel assembly process is shown in Figure S1D. Voxel to 507 
voxel joints used the same process, shown in Figure S1E. Metrics for assembly time and 508 
throughput are shown in Table S1.  509 
 Mechanical characterization: Small-scale tests to validate continuum behavior as shown 510 
in Figure 1 were performed on an Instron 4411 testing machine using a 5kN load cell. Lattice 511 
specimens for each type were tested in cubes of side length voxel count n = 1, 2, 3, and 4. Lattice 512 
tests were performed on an Instron 5985 testing machine using a 250 kN load cell. Specimens of a 513 
given lattice type were loaded to the same amount of relative strain, at an extension rate of 10 514 
mm/min. Both machines use Bluehill 2 software for data acquisition. Video was recorded using a 515 
Nikon D3400 camera. Video was analyzed using Tracker, an open source video analysis and 516 
modeling tool (https://physlets.org/tracker/). 517 
 Numerical modeling: Fully meshed FEA simulations were used to check stress 518 
concentrations, but these typically incur higher computational costs Figures S5-6), and therefore 519 
were limited to under 10 voxels. A static stress analysis solver based on NASTRAN was used in 520 
Autodesk Fusion 360’s built in simulation environment. Larger lattice models were simulated 521 
using the Frame3DD library, a freely available numerical solver implementing Timoshenko beam 522 
elements (http://frame3dd.sourceforge.net/) along with a python interface, PyFrame3DD 523 
(https://github.com/WISDEM/pyFrame3DD). For analysis of asymptotic behavior of large lattices 524 
Frame3DD was modified to incorporate sparse matrix math using CHOLMOD from the 525 
SuiteSparse library (https://github.com/DrTimothyAldenDavis/SuiteSparse). Python utilities were 526 
written to automate creating nodes, edges, faces and voxels, as well as applying loadings and 527 
boundary conditions using spatial rules (e.g. fixing the bottom of a lattice and applying forcing to 528 
the top nodes).  These simulations were validated against a commercial software with comparable 529 
sparse matrix solving capabilities (Oasys GSA v9.0).  530 
 531 
 532 
 533 
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Part geometry, molding, assembly 706 

 707 

 708 
Figure S 1: Production of lattice by injection molding and assembly. A) Injection molding gate 709 
layout and resulting material flow and knit line location, B) Characterization of different beam 710 
groups based on relative locations on part, C) Two part mold, with cavity below and core above, 711 
and a detailed view of the 45 degree angle hole, which is achieved by splitting the feature 712 
between core and cavity, D) Voxel assembly sequence. Faces are joined together one at a time, 713 
using rivets at the corners. A voxel consists of six faces and twelve rivets. E) Neighboring voxels 714 
are joined with the same method, rivet gun shown entering opposite face, at slight angle due to 715 
interference with inter-voxel joint node of entering face.   716 

We characterized the as-molded properties of the GFRP material, where the elastic 717 
modulus and yield strength vary based on the location of the gate and resulting knit lines. For 718 
injection molded FRP, fiber concentration reduces with distance from the gate. The highest 719 
concentration is around the gate, resulting in relatively high stiffness, but residual thermal and 720 
mechanical stress from the injection process cause a relatively lower yield strength. At the end of 721 
the flow, knit lines can result in around 50% yield strength reduction (27), in addition to reduced 722 
elastic modulus owing to distance from the gate. Therefore, controlling the location of these 723 
features is important. We want to avoid having the gate or knit line occur near the middle of the 724 
beam, where stress will be magnified during beam buckling induced strain. We also want to avoid 725 
having the end knit line occur on the inter- or inner-voxel nodes. Aside from operational stresses, 726 
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during the voxel construction the outward force of the rivet expanding from actuation causes 727 
circumferential stress in the node area which can result in rupture along knit lines.  728 
 The resulting gate and knit line locations are shown for the rigid part type in Figure S1A, 729 
with contours indicating the flow location at increasing time steps. To characterize the range of 730 
as-molded material properties, specimens from each beam group were extracted from the faces 731 
and tested in uniaxial tension until failure, and the resulting elastic modulus and yield strength 732 
were calculated, as shown in Figure S1B. Our findings confirm several key aspects of part 733 
production. Beam group 1, which is closest to the gate, has high fiber content, thus a high elastic 734 
modulus, but has lower yield strength due to residual stress caused by gate proximity. Beam 735 
groups 2 and 3 have flows that move continuously from one end to the other, which promotes 736 
axial fiber alignment, giving a higher elastic modulus and yield strength. The last beam group has 737 
the lowest modulus, due to being at the end of the flow front, and the lowest strength, due to knit 738 
line proximity. 739 

 740 

  741 



Science Advances                                               Manuscript Template                                                                           Page 25 of 40 

 

Scaling Study  742 

 743 
 744 

 745 
 746 

Figure S 2: Voxel scaling. A) Current voxel with 75mm pitch, B) 5x shrink (20% original size) 747 
with 15mm pitch, C) x10 shrink (10% original size) with 7.5mm pitch, D) 75mm pitch face part 748 
with 2.5mm beam thickness and 2.5mm diameter rivet with rivet tool, E) 15mm pitch face part 749 
with 0.5mm beam thickness and 0.5mm diameter fastener (screwdriver shown for reference), F) 750 
7.5mm pitch face part with 0.25mm beam thickness and 0.25mm diameter fastener with scaled 751 
screwdriver for reference. 752 

 The scale of our system was originally driven by an application (see Figure S13). A 75mm 753 
lattice pitch was deemed appropriate in terms of spatial resolution (the higher the better) and 754 
number of parts (the fewer the better). But a 75mm unit cell is large compared to the majority of 755 
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published lattice metamaterials, which typically have micrometer scale beam elements composing 756 
centimeter scale parts. One argument in favor of discrete assembly is the practicality: for tooling 757 
on the order of 103 USD and parts on the order of 100 USD, with commercially available fasteners 758 
and tools costing 102 USD, one can build large-scale mechanical metamaterials with no additional 759 
overhead. But if one wanted higher spatial resolution with a smaller unit cell, how well would the 760 
system presented here scale down? Here we can look at two critical aspects: part manufacturing 761 
and part joining.  762 
 Commercially available injection molding specifies minimum wall thickness of around 763 
0.5mm, with some more specialized micro-molding services offering as thin as 0.15mm (36). Our 764 
parts have beam thickness of 2.5mm, so just looking at isometrically scaling the part down (which 765 
is sub-optimal, but useful for this exercise), we can get a part size shrink of 5x with typical 766 
commercial molding. Micro-molding can potentially provide up to x16 shrink; using a x10 shrink 767 
factor gives 0.25mm thick beams. So, while the cost model may become less favorable, micro-768 
molding can produce lattice parts with 7.5mm pitch.  769 
 For joints, rivets do not scale down past 1/16” (1.35mm) diameter. The smallest 770 
commercially available screws tend to be 0000-xxx or M0.5, both with diameters of around 771 
0.5mm. Based on the current design, scaling isometrically x5 would work. Fasteners with 772 
0.25mm diameter for the x10 shrink may need to be custom made, which is a cost penalty. So the 773 
practical limit for this method is a 5x shrink (15mm pitch), but the technical limit is around 10x 774 
(7.5mm pitch). Smaller than this will likely require custom part and fastener manufacturing with 775 
processes such as subtractive laser milling commonly seen in MEMS fabrication (50). Clearly, at 776 
this scale, we do not come close to achieving the “size effects” shown at nanometer scale features, 777 
where effective properties such as strength exceed those of the constituent material (40) (41).  778 
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Discrete lattice load path analysis 779 

 780 

 781 

 782 
Figure S 3: Load paths in rigid Cuboct lattice. A) 2x2x2 cube under uniaxial tension in Z 783 
direction, B) sample voxel under tension in Z direction, C) detail of corner joint showing internal 784 
load transfer, D) 2x2x2 cube under uniaxial compression in Z direction, E) sample voxel under 785 
compression in Z direction, F) detail of corner joint showing internal load transfer, G) 786 
illustration of cross-axis load transfer at joints, showing XZ and YZ planes in uniform tension, H) 787 
mixed compression and tension, and I) uniform compression. 788 
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The rigid cuboct is taken as the base unit, which is used for describing system architecture such as 789 
critical dimensions and relative structural performance metrics. Figure S3A shows a 2x2x2 cube 790 
loaded in tension in the positive Z direction. We can observe that in-plane beams parallel to the 791 
loading direction (XY and YZ planes) go into tension, which results in the out of plane members 792 
(XY plane) go into compression. Assuming periodic boundary conditions, a single representative 793 
voxel is shown in Figure S3B, where external loading and reaction forces at outward facing nodes 794 
are shown. XY plane nodes logically go into tension on the top and bottom faces of the voxel. XZ 795 
and YZ faces have combined tension and compression reaction forces at the nodes, while all 796 
beams are in tension. Due to the construction employed, in-plane face loads are transferred 797 
through adjacent nodes to the outward face, which is normal to the load path direction, as shown 798 
in Figure S3C. At the junction of four, in-plane voxels, there are 3 possible load paths: all 799 
compression, all tension, or mixed tension and compression (Figure S3G-I). All compression is 800 
resolved through contact pressure of the node area, which helps in reducing the resulting pressure 801 
magnitude. All tension loads transfer from in plane beams, through inner-voxel joints, then 802 
through rivets which are parallel to the load path but fixtured to faces which are normal to the 803 
load path. Combined loads have overlapping, orthogonal load paths. 804 

 805 
 806 

  807 
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Hysteresis Characterization  808 

 809 

Figure S 4: Characterization of lattice hysteresis. A) Single cycle hysteresis loops for lattice 810 
specimens (4x4x4 Cuboct, Compliant and Auxetic, 3x3x12 Chiral) as well as raw GFR Nylon 811 
material, B) History of hysteresis loop strain energy normalized by total strain energy for 812 
specimens in A 813 

While the voxel joints do not influence the static behavior of the lattice, they do introduce 814 
repeatable hysteresis through micro-slip at the riveted joints.  Figure S4A shows representative 815 
hysteresis loops form a single loading-unloading cycle for the largest fabricated lattice samples 816 
and the raw lattice material, while Figure S4B shows hysteresis as a ratio of dissipated energy 817 
over loading strain energy for 10 complete cycles. All specimens exhibit an initial larger 818 
hysteresis loop, possibly due to Instron fixturing, before settling to consistent hysteresis levels in 819 
subsequent cycles. The cuboctahedral lattice, with the largest stresses at connection points, has 820 
the largest hysteresis magnitude, approximately twice that of the base material. This corresponds 821 
to matching the hysteresis of a rigid rubber at a fraction of a percent of the density (53, 54). The 822 
auxetic and compliant lattices have lower hysteresis, while the chiral sample displays no 823 
additional hysteresis compared to the bulk material. Hysteresis can be further reduced with 824 
preloaded joints (27). 825 

 826 

 827 

 828 

829 
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Beam slenderness and relative density 830 

 831 

Figure S 5: Relationship between compression member slenderness ratio, failure mode, and 832 
resulting lattice relative density. Beams above the critical slenderness ratio (l/k = 29.5) fail by 833 
elastic buckling, beams below fail by plastic buckling. Relative densities above 30% are invalid 834 
for cellular theory to apply.  835 

 Here we discuss yield strength as the point at which initial beam failure occurs. The 836 
mechanism for this failure is important for understanding how the discrete lattice system behaves 837 
as a continuum lattice. As shown in Figure S 3, external loads are resolved internally as beam 838 
tension and compression. Beam tensile failure is determined by constituent material and beam 839 
cross sectional area, with the critical force  𝐹 = 𝜎௧ ∗ 𝐴 .  840 
 Beams in compression fail in different ways depending on their slenderness ratio, defined 841 

as  effective length over radius of gyration, ቀ



ቁ = 𝐿ඥ𝐴/𝐼. This is used to describe three 842 

compression member types in terms of their failure modes: short, intermediate, and long. As 843 
cellular solid theory is only applicable at relative densities under 30%, we limit our analysis to 844 
beams with slenderness ratios above 4:1. For sparse Euler buckling is the elastic stability limit, 845 
and is applicable to long members, but as slenderness ratio goes to zero, Euler buckling 846 
predictions go to infinity. Therefore, the Johnson parabola curve considers material yield strain 847 
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(σy/E), the strain at which the material ceases to be linearly elastic, in calculating the inelastic 848 
stability limit. The transition between long and intermediate occurs at the critical slenderness 849 
ratio, which can be calculated using material and beam geometric properties (40).    850 
 Our material is a GFRP with an elastic modulus E = 2 GPa and yield strength σy = 107 851 

MPa, and we can calculate critical slenderness using ቀ



ቁ


=  ඥ2𝜋ଶ𝐸/𝜎௬ = 19.21. Based on our 852 

part geometry, we find our beam slenderness to be ~29.5. Therefore, our beams should fail based 853 
on Euler buckling at a critical load Fcr = 70N. Using the yield strength values from Figure S 7A, 854 
we can determine the experimental value for critical beam load by dividing the global peak load 855 
(7.8 kN) by the cross sectional voxel count (16), resulting in 487.5 N/voxel, 121.9 N/node, which 856 
is carried by two beams at 45 degree angles, giving a beam load of 86N.    857 

858 
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Free body diagrams of each lattice type 859 

 860 

Figure S 6: Free body diagram of unit cell for each lattice type. A) Rigid lattice type resolves 861 
external loads through axial member forces, in this case shown as compression and resulting 862 
member buckling, B) Compliant lattice type resolves external loads through axial shortening 863 
combined with a small amount of bending, producing little to no lateral reaction forces at nodes, 864 
C) Auxetic lattice type deforms through bending at the joints, and can be considered a pseudo 865 
rigid body model as shown to the side, D) Chiral lattice type deforms by bending and rotation in 866 
side faces, and nearly pure rotation in top face, thus producing chiral response.   867 
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Boundary vs internal conditions with increasing voxel count 868 

 869 

Figure S 7: Boundary vs internal conditions as a function of cube side length. A) A single voxel 870 
is all boundary conditions, but this balances at n = 3, then continues increasing asymptotically 871 
for internal and decreasing asymptotically for boundary, B) Visualization of cube from n = 1 to n 872 
= 10.  873 

874 
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Numerical Modeling Comparison  875 

 876 

Figure S 8: Comparison of numerical models for rigid cuboct voxels. A) Deformed cuboct 877 
lattices colored by displacement fully meshed FEA (top) and beam models (bottom), B) 878 
Comparison of effective modulus of beam and fully resolved FEA models, C) Number of elements 879 
for beam and fully meshed FEA models 880 

Here we compare fully meshed and beam FEA models. Figure S 8 A shows qualitative agreement 881 
between the fully meshed (top) and beam (bottom) models for uniform displacement boundary 882 
conditions. The effective moduli from the two models in Figure S 8 B show good agreement, with 883 
the largest relative error for a single voxel where the boundary conditions have a large effect on 884 
the voxel response. The number of elements needed to resolve the lattice samples is shown in 885 
Figure S 8 C. Fully meshed FEA results used adaptive mesh refinement to converge strain energy 886 
to within 95%, while beam mesh convergence studies are presented in Figure S 9. The fully 887 
meshed FEA requires approximately 3 orders of magnitude more elements than the corresponding 888 
beam model. 889 
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 890 

 891 

Figure S 9: Beam model mesh convergence studies. A) Cuboctahedral lattice convergence of 892 
E*, B) Compliant  lattice convergence of E*, C) Auxetic lattice convergence of Poisson ratio, D) 893 
Chiral lattice convergence of twist (degrees/% strain)  894 

Convergence studies for the four lattice types are shown in Figure S 9. The error is defined 895 
relative to a reference, highly refined result for the relevant quantity of interest for each lattice 896 
type: effective modulus, Poisson ratio, and twist for the cuboctahedral and compliant, auxetic, and 897 
chiral lattices respectively. All results presented in the main text are converged to within 1% of 898 
the reference solution. The cuboctahedral results for side length of 2 or greater are converged with 899 
just one beam element per edge, while the single voxel requires at least 8 elements per edge. This 900 
is related to the effect of boundary conditions and the increasingly extension dominated behavior 901 
of the cuboctahedral lattice as the number of cells increases.  Convergence of the compliant and 902 
chiral voxels is dominated by increasing resolution of the curvilinear features present, while the 903 
Poisson’s ratio of the auxetic voxels are converged to within model precision with just one 904 
element per beam. 905 

 906 
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Experimental results  907 

 908 

 909 

Figure S 10: Experimental results. A) Rigid, B) Compliant, C) Auxetic, D) Chiral.  910 

 911 

 912 

  913 
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 Experimental lattice specimens 914 

 915 

Figure S 11: As-built lattice specimens. A) Rigid, B) Compliant, C) Auxetic, D) Chiral. Scale bar: 916 
75mm. 917 

Macro-scale structural application 918 
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 919 
Figure S 12: 10x10x10 voxel cube. Voxels are passively stacked, in preparation for assembly 920 
into cellular car frame shown in Figure S 11. Cube side length is 750mm. Scale bar: 100mm.  921 
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 922 

 923 
Figure S 13: Large scale Application of discretely assembled mechanical metamaterial as a car 924 
frame. A) Mass produced parts, B) Assembled layer, C) Completed frame without subsystems, D) 925 
Supermileage vehicle in operation. Scale bars A) 75mm, B) 225mm, C) 225mm, D) 150mm. 926 
Image credit: Kohshi Katoh, Toyota Motor Corporation.   927 
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Table S1: Assembly metrics 928 

Specimen cube  
voxel width n 

Total 
voxels 

Total Rivets Avg 
rivets/voxel 

Time/ 
voxel 
(min) 

Total 
time 
(min) 

cm3/hr g/hr 

1 1 12 12 1.5 1.5 16,876 500 
2 8 144 18 2.25 18 11,250 333 
3 27 540 20 2.5 67.5 10,125 300 
4 64 1344 21 2.625 168 9,643 285 

5*  125 2700 21.6 2.7 337.5 9,375 277 
10* 1000 22800 22.8 2.85 2850 8,882 263 
N* N3 N3*12 + 

[N2*(3(N-1))]*4 
24 3 3*N3 8,440 250 

* = projected (not built), Avg Rivet time = 7.5s, Voxel mass = 12.5g, Voxel vol = 422 cm3 929 

 930 

Table S2: Comparison between additive manufacturing and discrete assembly 931 

Manufacturing Method Volume rate 
(cm3/hr) 

Mass rate 
g/hr 

Machine/ 
setup cost 

Part 
scale 

Selective laser melting (SLM) (55) <170 <195 105-106 <1m 
Fused deposition modeling (FDM) (56) <60 <65 103-105 >1m 

Polyjet (photopolymer) (57) <80 <95 104-105 <1m 
Stereolithography (SLA) (58) <280 <340 104-105 <1m 

Large area projection 
microstereolithography (LAPµSL) (59) 

1.2 1.4 >106 <<1m 

Discrete Assembly (this work) ≈5626 ≈162 103 >1m 

 932 

 933 
 934 


