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Abstract: 10 

Mechanical metamaterials offer novel properties based on local control of cell geometry and their 11 

global configuration into structures and mechanisms. Historically, these have been made as 12 

continuous, monolithic structures with additive manufacturing, which affords high resolution and 13 

throughput, but is inherently limited by process and machine constraints. To address this issue, we 14 

present a construction system for mechanical metamaterials based on discrete assembly of a  15 

finite set of parts, which can be spatially composed for a range of properties such as rigidity, 16 

compliance, chirality, and auxetic behavior. This system achieves desired continuum properties 17 

through design of the parts such that global behavior is governed by local mechanisms. We 18 

describe the design methodology, production process, numerical modeling, and experimental 19 

characterization of metamaterial behaviors. This approach benefits from incremental assembly, 20 

which eliminates scale limitations, best-practice manufacturing for reliable, low-cost part 21 

production, and interchangeability through a consistent assembly process across part types. 22 

 23 

MAIN TEXT 24 

 25 

Introduction 26 

The notion of rationally designing a material from the micro to the macro scale has been a 27 

longstanding goal with broad engineering applications. By controlling local cell properties and 28 

their global spatial distribution and arrangement, metamaterials with novel behavior can be 29 

achieved. The foundation for mechanical metamaterials comes from the study of cellular solids 30 
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(1), where natural materials such as wood and bone (2), or synthetic materials such as stochastic 31 

foams, are understood as a network of closed or open cells (3). In the latter case, edges form a 32 

network of beams, and based on the connectivity of these beams and their base material, 33 

macroscopic behaviors can be predicted analytically (4). It was from this insight that the field of 34 

architected materials formed, enabling design of periodic structures with tailorable properties 35 

such as improved stiffness over foams due to higher degrees of connectivity (5).  36 

 Advances in digital fabrication, specifically, additive manufacturing, have enabled these 37 

complex designs to be realized. Seminal work demonstrated stiff, ultralight lattice materials (6), 38 

and has since been improved, resulting in mechanical metamaterials with superior stiffness and 39 

strength at ultralight densities (7) with multiscale hierarchy (8). Benefits of nanoscale features 40 

further expand the exotic property parameter space (9) and architectures featuring closed-cell 41 

plates have shown potential for approaching the theoretical limit for elastic material performance 42 

(10). Other designs seek to utilize compliance, which can be attained through internal geometric 43 

mechanisms (11), or through base materials capable of large strain (12). Internal architectures can 44 

be designed to transmit or respond to load in other non-standard ways. Auxetic metamaterials 45 

exhibit zero or negative Poisson’s ratio (13). Internal, re-entrant architectures produce contraction 46 

perpendicular to compressive loading, and expansion perpendicular to tensile loading, counter to 47 

traditional continuum material behavior (14). Chiral metamaterials exhibit handedness based on 48 

asymmetric unit cell geometry. These designs produce out of plane deformations, such as twist, in 49 

response to in plane loading (15). 50 

 Nearly all of the aforementioned mechanical metamaterials are made with some form of 51 

additive manufacturing, most of which are summarized in (16). These processes vary widely in 52 

terms of cost, precision, throughput, and material compatibility. The lower end of the cost 53 

spectrum, such as fused deposition modeling (FDM), also tends to have lower performance. 54 

Limits of thermoplastic extrusion include layer-based anisotropy (17) and errors resulting from 55 

build angles for complex 3D geometry (18). Higher performance, and higher cost, processes such 56 

as selective laser melting (SLM) utilize materials such as stainless steel, but require non-trivial 57 

setup for particulate containment, and can suffer from layer-based anisotropy, thermal warping, 58 

and geometry irregularity (19). Some of the highest performance multi-scale metal microlattice 59 

production techniques based on lithographic and plating processes are well-studied and repeatable 60 

but are also highly specialized and labor-, time-, and cost-intensive. Polymerization, curing, 61 

plating, milling, and etching can require up to 24 hours from start to finish for sample preparation 62 

(6). Large area projection microstereolithography (LAPµSL) is capable of producing lattices with 63 

µm (10-6 m) scale features on centimeter (10-2 m) scale parts (8) with significantly improved 64 
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throughput, but extension to macro-scale (>1m) structures remains out of reach, due to practical 65 

limitations in scaling these processes and their associated machines.  66 

 The largest structure that can be printed with any given process is typically limited by the 67 

build volume of the machine. Therefore, significant effort is focused on scaling up the machines. 68 

Meter-scale FDM platforms (20) and larger cementitious deposition machines (21) have been 69 

demonstrated, and coordinated mobile robots are proposed to achieve arbitrarily large work areas 70 

(22). However, there is a tradeoff between precision, scale, and cost. Commercially available two-71 

photon polymerization machines have resolution on the order of 1 µm (10-6 m), build size on the 72 

order of 100mm (10-1 m), and cost on the order of 106 $/machine (23). Macro-scale FDM 73 

machines boast build sizes of 101 m (24), but are unlikely to have sub-mm (10-3 m) resolution. 74 

Thus, roughly the same dynamic range (scale/resolution) is offered, but with costs approaching 75 

107 $/machine, we see a possible super-linear cost-based scaling of achievable dynamic range. 76 

Building large, precise machines is expensive, and due to the inherent coupling of machine 77 

performance, size, and cost, there are significant challenges for realizing macro-scale (>1m) 78 

mechanical metamaterials with high quality and low cost.  79 

An alternative approach to producing mechanical metamaterials seeks to decouple these 80 

aspects, and in doing so overcome machine-based limitations. Based on reversible assembly of 81 

discrete, modular components, this method utilizes mechanical connections to build larger, 82 

functional metamaterials and structures out of smaller, mass producible parts. The first 83 

demonstration of this approach utilized custom wound, centimeter-scale, carbon fiber reinforced 84 

polymer (CFRP) components (25), resulting in an ultralight density lattice with improved elastic 85 

stiffness performance over then state of the art metallic microlattice (6), due to the high modulus 86 

constituent material. Following this, larger scale, octahedral voxel (volumetric pixel) building 87 

block units were made using commercial off the shelf (COTS) high modulus, unidirectional 88 

pultruded CFRP tubes connected with injection molded glass fiber reinforced polymer (GFRP) 89 

nodes, resulting in a macro-scale (>1m), high performance, reconfigurable structure system (26). 90 

Following this, entire voxel units were made with injection molding of GFRP, yielding the first 91 

truly mass-producible discrete lattice material system with low cost, best-practice repeatability, 92 

and high performance (27). Discrete assembly offers scalability and functionality not achievable 93 

with traditional methods due to process and machine limitations. 94 

 In this paper, we present a construction system for mechanical metamaterials based on 95 

discrete assembly of a finite set of modular, mass produced parts. We demonstrate experimentally 96 

the desired metamaterial property for each part type, and combined with numerical modeling 97 

results, display other novel, unexpected properties. A modular construction scheme enables a 98 
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range of mechanical metamaterial properties to be achieved, including rigid, compliant, auxetic 99 

and chiral, all of which are assembled with a consistent process across part types, thereby 100 

expanding the functionality and accessibility of this approach. The incremental nature of discrete 101 

assembly enables mechanical metamaterials to be produced efficiently and at low cost, beyond 102 

the scale of the 3D printer.  103 

 104 

Results 105 

Continuum behavior from discrete parts 106 

  107 

 108 

Figure 1: Continuum behavior from discrete parts: subsystem description and characterization. 109 

A) 3x3x3 lattice consists of 27 individual voxels, B) Voxels consist of six individual faces, C) 110 

Faces consist of beams and joints, D) Experimental results for subsystem characterization, where 111 

we see joints (rivets + nodes) are individually stiffer and stronger than voxels, which are 112 

governed by beam properties E) Subsystem testing setups. 113 

 First, we present the discrete material construction system and show how continuum 114 

behavior is achieved through design of the parts and their relative structural performance.  Parts 115 



Science Advances                                               Manuscript Template                                                                           Page 5 of 29 

 

are designed to have their local beam properties govern global lattice behavior, resulting in an 116 

effective bulk material that behaves as if it were produced monolithically, so that, structurally 117 

speaking, the joints disappear.  118 

 A lattice, or a mechanical metamaterial consisting of a periodic network of interconnected 119 

beams, can be described, and its performance predicted, analytically. We can describe lattices as 120 

stretch- or bending-dominated, based on how they resolve external forces as a function of their 121 

internal beam connectivity, which corresponds to Maxwell’s frame rigidity criteria extended to 122 

3D (5). Stretch-dominated lattices, such as the octet, have higher connectivity (Z = 12) and higher 123 

stiffness to weight than bending-dominated lattices, such as the kelvin, which have lower 124 

connectivity (Z = 4) (7). In this work we use the cuboctahedra lattice (referred to as Cuboct) 125 

geometry, which is uniquely positioned between low and high connectivity (Z = 8) yet has been 126 

shown to have stretch-dominated behavior, in both microlattice implementation (28) and as 127 

discretely assembled vertex connected octahedra (27). 128 

 In Figure 1A-C, we show a new decomposition using face-connected cuboctahedra voxels 129 

which produces the same lattice geometry but has additional benefits to be discussed herein. 130 

Voxels are discretized into faces, which consist of beams and joints. There are two types of joints: 131 

inner-voxel joints are the points at which 6 separate faces are joined to form a voxel, and inter-132 

voxel joints provide the vertex to vertex connections between neighboring voxels at along a single 133 

face. A joint consists of nodes, which are the geometric features on the part providing the 134 

fastening area, and the fasteners, which are mechanical connectors. Based on the material and 135 

geometric properties of each subsystem, local properties can be controlled to ensure proper 136 

global, continuum behavior. In this case, our lattice should behave as an interconnected network 137 

of beams. Therefore, we wish to design joints to possess significantly higher effective stiffness 138 

and strength than the beams they connect. In this way, the global effective stiffness and strength 139 

of the lattice are governed by those subsystems with the lowest relative value.  140 

 Following as-molded material characterization to calibrate analytical and numerical 141 

models (Figure S1), subsystems are then characterized in tests designed to isolate the critical 142 

performance aspects for proper system behavior. Rivets, inter-voxel nodes, individual voxels 143 

(consisting of beams and inner-voxel joints), and multi-voxel assemblies were tested. The specific 144 

goal is to quantify the degree to which voxel and multi-voxel behavior is governed by stiffness 145 

and strength properties of the beams, rather than the joints. Experimental results are shown in 146 

Figure 1D, with axial stiffness and critical load values noted.  147 

 Since each subsystem effectively acts across the same cross section (a single voxel), we 148 

can directly compare their yield strength using their observed failure loads. We see the intervoxel 149 
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node and fastener yield strengths are roughly two and four times the voxel yield strength, 150 

respectively. For axial stiffness, we treat single and multi-voxel tests as effective springs in series. 151 

A single voxel then consists of five effective springs in series: top fasteners, top nodes, voxel, 152 

bottom nodes, and bottom fasteners. For springs in series, the equivalent axial stiffness is the 153 

reciprocal of the sum of the individual spring reciprocals: 154 

1

𝑘𝑒𝑞
= ∑

1

𝑘𝑖

𝑛

𝑖=1

 155 

𝑘1 ≪ 𝑘𝑖>1 156 

𝑘𝑒𝑞 ≈ 𝑘1 157 

For large ki and small k1, we see that keq equals k1, indicating that the governing value is 158 

the lower spring stiffness. Using measured values for fasteners, nodes, and voxels, we see the 159 

experimental value for the two-voxel assembly agrees with this analytical description, and that 160 

both effective stiffness and strength are governed by voxel, and thus beam, properties. This 161 

construction system is then used to design a family of part types with a range of mechanical 162 

metamaterial properties. 163 

 164 

 165 

 166 

  167 
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Part types 168 

 169 

Figure 2: Four types of discretely assembled mechanical metamaterials, left to right: rigid, 170 

compliant, auxetic, and chiral. A) As-molded face parts, B) Single voxel, front view, C) 2x2x2 171 

Cube, front view, D) Single voxel, oblique view, E) 2x2x2 oblique view. Scale bars: A) 10mm, B, 172 

D) 25mm, C, E) 50mm. 173 

  174 
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Here we present the discretely assembled mechanical metamaterial system consisting of 175 

four part types: rigid, compliant, auxetic, and chiral, shown in Figure 2. Six face parts (Figure 2A) 176 

are assembled to form voxels (Figure 2B), which are then assembled to form multi-voxel lattices 177 

(Figure 2C). Details of the assembly procedure and throughput metrics can be found in 178 

Supplementary materials.  179 

 Rigid voxels resolve external loading through axial beam tension and compression, resulting 180 

in elastic, followed by plastic, buckling of struts. Lattice made with these parts shows near-linear 181 

scaling of effective modulus, positive Poisson ratio, and yield strength determined by 182 

manufacturing process parameters. Compliant voxels are designed with corrugated flexure beams, 183 

a motif found in flexural motion systems (29),  which resolve axial beam forces through elastic 184 

deformation of the planar flexures. Lattice made with these parts show consistent elastomeric 185 

behavior at even single voxel resolution and have a near-zero Poisson ratio. Auxetic voxels are 186 

designed as intersecting planes of re-entrant mechanisms, which expand and contract laterally under 187 

uniaxial tension and compression, respectively. Lattice made with these parts show negative 188 

Poisson ratio through a combined action of pure mechanism and flexural beam bending. Chiral 189 

voxels are designed with an asymmetric mechanism which responds to in plane loading by 190 

producing either clockwise (CC) or counterclockwise (CCW) rotation. When interconnected in 191 

three dimensions, this produces out of plane twist in response to uniaxial tension or compression. 192 

By combing CC and CCW parts, internal mechanism frustration can be avoided, enabling improved 193 

scalability over prior art. The four lattice types and their behaviors will be described in further detail 194 

in the following subsections. 195 

 196 

 197 

  198 
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Rigid Lattice Behavior 199 

    200 

Figure 3: Rigid mechanical metamaterial. A) Characteristic unit cell voxel demonstrating beam 201 

buckling and positive transverse strain in response to compressive load, B) Experimental test 202 

setup for n = 1-4, undeformed (L), and at initial beam failure (R), C) Geometric parameters for 203 

simulations, where beam thickness t is a function of lattice pitch P, D) Effective stiffness 204 

simulation and experimental results demonstrating continuum behavior at increasing voxel count 205 

E) Simulation results for modulus-density scaling value for rigid and compliant lattice, which are 206 

linear and quadratic, respectively.  207 

  208 
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  209 

 210 

 The rigid lattice type exhibits modulus-density scaling which matches previous results in 211 

literature but does so with a novel geometric decomposition. We present experimental and 212 

numerical results for the rigid lattice type in Figure 3. The characteristic behavior of a unit cell 213 

voxel is shown in Figure 3A. The geometry is isotropic along its primary axes, and it responds to 214 

loads through axial beam tension and compression. While individual voxels are dominated by 215 

under-constrained, mechanism behavior of the quadrilateral faces, when multiple voxels are 216 

joined, there is sufficient connectivity to provide rigidity through triangulation of neighboring 217 

voxel faces. As a result, effective modulus increases with increasing cell count, and this value 218 

eventually reaches an effective continuum value, as seen in Figure 3D.  219 

 Having established that the global behavior is governed by the beam properties, now we 220 

can correlate analytical models with experimental results for effective lattice behavior. Here we 221 

will look at effective elastic modulus E* and yield strength σy, the former corresponding to the 222 

linear portion of the stress strain curve under quasi-static loading, and the latter corresponding to 223 

the failure load divided by the specimen cross section area. Stress-strain curves for lattice 224 

specimens of cube side voxel count n = 1-4 are shown in Figure S7, where an initial linear elastic 225 

regime is followed by a non-linear elastic regime and plastic yield. Using load and displacement 226 

data, stress and strain values are calculated based on lattice specimen size. The calculated moduli 227 

are shown with numerical results in Figure 3D. It can be seen that as voxel count n increases, E* 228 

approaches a continuum value depending on the beam thickness, and thus relative density of the 229 

lattice. Numerically, we investigate the effect of increasing beam thickness t as a function of 230 

lattice pitch P and plot the resulting curves in Figure 3D.  231 

 These predicted effective lattice properties over the range of effective densities are plotted 232 

relative to constituent values in Figure 3E. The slope of the curve connecting these points, plotted 233 

on a log/log chart, provides the power scaling value, which is used to analytically predict lattice 234 

behaviors at the macroscopic scale (4). Effective modulus and density are related to constituent 235 

modulus and density by 𝐸∗ 𝐸⁄ ∝  (𝜌∗ 𝜌⁄ )𝑎, where a is 1 for stretch dominated lattices and 2 for 236 

bending dominated. We find a  = 1.01 for our rigid lattice. Based on the agreement between 237 

experimental and numerical results, we can conclude that the linear scaling shown is valid. This 238 

scaling value had been shown previously for the monolithic (additively manufactured) 239 

cuboctahedron lattice (28) and for discretely assembled, vertex connected octahedra (27), to 240 

which we now add our novel lattice decomposition.   241 
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 Next, we compare experimental yield stress results with analytical predictions of local 242 

beam failure based on relative density, as a function of beam thickness t and lattice pitch P. Here, 243 

we will use experimental data from the 4x4x4 specimen, as this is closest to demonstrating 244 

continuum behavior. Based on the load at failure and lattice geometry, we can determine a given 245 

beam compressive failure load to be 88N. We determine the analytical critical beam load using 246 

either the Euler buckling formula or the Johnson parabola limit, depending on the compression 247 

member’s slenderness ratio (Figure S3). We determine our beam slenderness ratio to be 29.5, 248 

which is over the critical slenderness ratio of 19.7 (see supplementary material for complete 249 

calculation), thus we use Euler buckling formula. Because the as-molded material properties vary, 250 

we determine the critical load to range from 70 to 108 N, with the mean value of 89 N very 251 

closely approximating the experimental value. Thus, we see good correlation between both 252 

stiffness and strength based on the design of our discrete lattice material.  253 

 254 

 255 

 256 

 257 

  258 
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Compliant Lattice Behavior 259 

   260 

Figure 4: Compliant mechanical metamaterial. A) Characteristic unit cell voxel demonstrating 261 

flexure spring-beam deformation and small transverse strain in response to compressive load, B) 262 

Experimental test setup for n = 1-4, undeformed (L), and at onset of non-linearity (R), C) 263 

Geometric parameters for simulations, where spring-beam amplitude a is a function of lattice 264 

pitch P, D) Effective stiffness simulation and experimental results, which show near continuum 265 

value at low voxel count for all but the smallest spring-beam amplitude designs, E) Simulation 266 

results for effective Poisson’s ratio for rigid and compliant lattice, with large spring-beam 267 

amplitudes having a value of near zero.  268 
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 The compliant lattice type exhibit quadratic scaling for effective stiffness, as well as 269 

consistency across voxel counts regarding continuum behavior and elastic limit values. We 270 

present experimental and numerical results for the compliant lattice type in Figure 4. The 271 

characteristic behavior of a unit cell voxel is shown in Figure 4A. While the load paths are 272 

topologically the same as the rigid voxel, as this is a function of lattice connectivity, the 273 

mechanism through which beams resolve these loads is different. Here, the planar-spring beams 274 

deform in combined axial and in-plane bending, as a controllable property of the compliant 275 

features we design. This produces several unique properties in this lattice type.  276 

 First, we can see from the experimental stress-strain curves that for similar strains, the 277 

compliant lattice shows linear elastic behavior, up until the elastic limit (Figure S7-B). The stress 278 

at which this transition occurs is consistent across voxel counts, from n = 1 to n = 4. Second, the 279 

effective modulus is also consistent across voxel counts. This is confirmed by simulations, as 280 

shown in Figure 4D. Given the large range of linear to non-linear and individual to continuum 281 

behavior seen in the rigid lattice, the compliant lattice is markedly different in its consistency. 282 

This behavior is attributable to the spring-like behavior of the beams, a similar observation to 283 

analytical models for stochastic foams (30). As cube specimen side length voxel count increases, 284 

so do the number of springs acting in parallel, which produces an effective spring stiffness 285 

𝐾𝑒𝑓𝑓 =  𝐾1 + 𝐾2 + 𝐾𝑛 … . But as spring count increases, so does effective area, both proportional 286 

to side length squared. Thus, a single voxel has the same effective modulus as a 4x4x4 or an n x n 287 

x n cube. This effect is reduced as beam-spring amplitude a goes to zero, meaning it approaches 288 

behavior similar to the rigid cuboct lattice.  289 

 Another property observed experimentally, and confirmed numerically, is a low, near-290 

zero, Poisson’s ratio. Figure 4E shows the simulated effective Poisson’s ratios for the compliant 291 

and rigid voxel. At the largest compliant amplitude, we see a value of near zero. As the amplitude 292 

a of the compliant spring feature goes to zero, the Poisson’s ratio converges to around 0.15, which 293 

is the effective value for the entire parameter range of the rigid lattice.   294 

 Finally, this lattice shows near quadratic stiffness scaling, in contrast to the near linear 295 

scaling shown by the rigid lattice, while having the same base lattice topology and connectivity as 296 

the rigid version (Figure 3E)—meaning it has bending-dominated behavior with a stretch 297 

dominated lattice geometry. This is attributable to the localized behavior of the spring-like beams. 298 

Whereas in the rigid lattice vertically oriented beams in compression are offset by horizontally 299 

oriented beams in tension, resulting in stretch dominated behavior, here global strain is a function 300 

of local spring-beam strain, which does not produce significant reactions at beam ends opposite 301 
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an external load. This behavior gradually changes as we approach a = 0.05 but is clearly after the 302 

experimental data at a = 0.075.   303 

  304 
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Auxetic Lattice Behavior  305 

 306 

Figure 5: Auxetic mechanical metamaterial. A) Characteristic unit cell voxel demonstrating  307 

reentrant mechanism action resulting in negative transverse strain in response to compressive 308 

load, B) Experimental test setup for n = 1-4, undeformed (L), and deformed to 0.2 strain (R), with 309 

partial auxetic behavior visible, C) Simulation results recreating experiments, with out of plane 310 

reentrant behavior highlighted, D) Geometric parameters for simulations, where reentrant 311 

distance d is a function of lattice pitch P, E) Effective Poisson’s ratio simulation and experimental 312 

results, F) 3D contour plot demonstrating effect of boundary conditions resulting in near zero 313 

Poisson’s ratio at edges. 314 

 315 
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 316 

 The goal of the auxetic lattice type is to exhibit a controllable negative Poisson’s ratio. We 317 

present experimental and numerical results for the auxetic lattice type in Figure 5. The 318 

characteristic behavior of a unit cell voxel is shown in Figure 5A. Due to the internal architecture, 319 

which consists of interconnected, re-entrant mechanisms seen elsewhere in literature (14), the cell 320 

responds to axial strain with a similarly signed transverse strain, resulting in a negative Poisson’s 321 

ratio ν, where 𝜈 =  − 𝜖𝑡𝑟𝑎𝑛𝑠 𝜖𝑎𝑥𝑖𝑎𝑙⁄ . This value can be controlled based on the re-entrant distance 322 

d as a function of lattice pitch P, as shown in Figure 5D.  323 

 Experimental results are shown in Figure 5B. Lattice specimens are cubes of voxel width 324 

n = 1-4. Specimens were compressed to identical strain values (𝜖𝑎𝑥𝑖𝑎𝑙 = 0.2), and transverse 325 

strain was measured by visually tracking points using fiducials mounted to the nodes along 326 

transverse faces (yz plane) parallel to the camera. Experimental data can be found in Figure S7-C. 327 

These results are slightly obscured due to reduced reentrant behavior at the edges of the lattice. In 328 

Figure 5C, we show contour plots element translation in the y direction, which is out of plane and 329 

normal to the camera view. While this behavior is generally isotropic, it should be noted that the 330 

effect of the internal mechanisms is reduced at the corners/edges of the cube specimen, as shown 331 

in Figure 5F. This effect is taken into account when calculating the effective strain values which 332 

are plotted in Figure 5E, over the range of parameters shown in Figure 5D.  333 

 There are two main insights from this study. First is that the effective metamaterial 334 

behavior approaches a nominal continuum value as cube side length of voxel count n increases. 335 

For any re-entrant distance, this behavior can be attributed to the increase of internal mechanism 336 

architecture relative to boundary conditions. Boundary conditions increase as a function of 337 

surface area proportional to 𝑛2, while internal mechanism architecture increases as a function of 338 

specimen volume proportional to 𝑛3. For lower values of d, the single voxel demonstrates lower 339 

values for Poisson’s ratio (increased auxetic behavior) compared to multi-voxel specimens, but 340 

this is strongly influenced by boundary conditions, and should be considered an outlier. 341 

 The second insight is that the effective Poisson’s ratio decreases (becomes more negative) 342 

as re-entrant distance d is increased, for voxel specimens larger than n = 1. This can be 343 

understood by considering the continuous beams of the re-entrant faces as a pseudo rigid body 344 

model (PRBM), where continuous flexural mechanisms are discretized as effectively rigid links 345 

connected by planar joints with torsional stiffness (ie: a spring) (31). As d decreases, so does link 346 

length, causing less clearly defined boundaries between the rigid link and compliant spring joint 347 

(see supplementary material for further analysis). As a result, the rigid link behavior begins to 348 

dominate, causing higher overall effective stiffness and lower compliance, thus reducing the re-349 
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entrant mechanism efficacy. Further description of this behavior can be found in supplementary 350 

material.  351 

  352 
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Chiral Lattice Behavior  353 

 354 

  355 

Figure 6: Chiral mechanical metamaterial. A) Characteristic unit cell voxel demonstrating out 356 

of plane coordinated rotation in response to compressive load, B) Simulation and experimental 357 

results for odd and even column cross sections in combination with design rules 1 and 2, C) Two 358 

chiral part types allow internal frustration to be avoided, thus enabling scalable chiral 359 

architecture, D) Design rules 1 (L) and 2 (R), which emerge from odd and even columns, 360 

respectively, E) Experimental and simulation results of n = 1, 2, and 3, showing total twist 361 

increases as column voxel width increases, but normalized twist per strain is lower for n = 2. 362 

  363 
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 The chiral lattice type exhibits scalable twisting behavior, which is attributable to having 364 

two chiral part types, and developing a construction logic to avoid internal frustrations. We 365 

present experimental and numerical results for the chiral lattice type in Figure 6. The 366 

characteristic behavior of a unit cell voxel is shown in Figure 6A. Based on the chirality 367 

orientation, the cell will respond to an axial strain with a macroscopic twisting in either the CW or 368 

CCW direction, in the plane normal to the direction of loading (ie: loading in z direction results in 369 

twisting in xy plane). The effective chirality can be measured as degrees twist per unit strain. 370 

 Experimental results are shown next to their numerical simulations in Figure 6E. Lattice 371 

specimens are designed as columns with 1:4 width to height ratio, similar to (15). The top half is 372 

CCW chiral lattice and the bottom half is CW chiral lattice. This produces the largest net twist at 373 

the rigid interface between the two halves and allows fixed boundary conditions at the top and 374 

bottom. Chiral columns of 1x1x4, 2x2x8, and 3x3x12 were tested in compression to identical 375 

strain values (𝜖𝑎𝑥𝑖𝑎𝑙 = 0.05), and twist was measured by tracking a single point at the center of 376 

the lattice. Experimental results are shown in Figure S7-D. Surprisingly, the 1x1x4 shows larger 377 

values for twist than the 2x2x8. This is attributable to internal architecture, which is also the cause 378 

of the scalable twisting found over a range of beam sizes.     379 

 Experimental values for twist per strain are shown next to simulation results in Figure 6B, 380 

over a range of values for radius r of the face part as a function of lattice pitch P, with increasing 381 

column voxel width n. We observe an increase twist per strain for smaller values of r. This is 382 

attributable to the direct relationship between strain and twist as a function of the rotational 383 

mechanism. If we assume a unit strain is translated into an arc length s, then the rotation angle θ 384 

increases as circle radius r goes to zero, given 𝜃 = 𝑠/𝑟. However, given a nominal beam 385 

thickness t, there is a limit to how small r can become before the mechanism becomes ineffective. 386 

See supplementary material for further analysis. 387 

 There are several key takeaways from this. First, we see that performance does not 388 

decrease monotonically with increasing voxel count n, but rather stabilizes to a continuum value. 389 

This is in contrast to comparable results in literature (15), and can be explained by looking more 390 

closely at the combination of CW and CCW part types. Done properly, internal frustrations—391 

when CW and CCW faces are joined they essentially cancel each other’s twist, resulting in zero 392 

twist per strain—can be avoided, as shown in (32) by using voids. In our case, we get improved 393 

twist performance by logically designing the internal architecture according to rules chosen to 394 

avoid frustration. This means that voxel types are directionally anisotropic, in contrast to the 395 

previous three lattice types, and further are spatially programmed to produce desired global 396 

effective behavior. Strategies for this spatial programming are shown in Figure 6C. On the left, 397 
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we show a beam with odd number voxel widths. Here, design rule #1 is to orient the net face 398 

chirality (represented as arrows) away from the column interior. The experimental lattices for n=1 399 

and n=3 widths were built using rule #1. Design rule #2 was developed starting from n=2, where 400 

the orientation of interior faces is ambiguous when following rule #1. Rule #2 introduces 401 

continuous, clockwise circumferential orientation of the interior chiral faces and was used in 402 

construction the n=2 experimental articles. Both rules are hierarchical, e.g. a rule #1 5x5 column 403 

contains a 3x3 and 1x1 column in its interior as shown in Figure 6C. Simulations were performed 404 

for all column widths using both rules and show decreased twist response for rule #2, in 405 

agreement with experimental measurements. These rules were determined empirically and are not 406 

considered exhaustive but indicate the importance of rational design in this lattice type.  407 

  408 
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Discussion  409 

 In this paper, we presented a method for producing large scale mechanical metamaterials 410 

through discrete assembly of modular, mass-produced parts. We showed that bulk, continuum 411 

behavior can be achieved through design of the parts and connections, ensuring global behaviors 412 

are governed by local properties. We presented a finite set of part types which exhibit a diverse 413 

range of behaviors. Rigid lattice types show linear stiffness to density scaling with predictable 414 

failure modes. Compliant lattice types show quadratic stiffness to density scaling, as well as 415 

unique bulk behavior at low cell count, such as near-zero Poisson’s ratio. Auxetic lattice types 416 

show controllable, isotropic negative Poisson’s ratio. Chiral lattice types show scalable transverse 417 

twist in response to axial strain, which is a result of two part types being used to prevent internal 418 

architectural frustration. All four part types showed good agreement with numerical results, and 419 

their behavior is predictable through analytical means. All lattice types are made the same way: 420 

parts are injection molded and assembled with blind rivets to make voxels, and voxels are 421 

similarly joined to build lattice. This is a low cost, highly repeatable process that promises to 422 

enable mechanical metamaterials at macro scales (Figure S8).  423 

 There are several constraints of the current system which are important to consider for 424 

scalability and performance. This approach is based on discrete assembly of mass-produced parts, 425 

and there are inherent constraints for both part production and assembly. While discrete lattice 426 

assembly as a method is material-agnostic, our current part production method is limited to 427 

materials that can be injection molded. This includes elastomers, polymers, and various fiber 428 

composites, but generally excludes ceramics, metals, and natural materials. However, there are 429 

numerous digital fabrication processes with sufficient precision, repeatability, and throughput to 430 

make parts for discrete lattice assembly. Metal parts can be produced with low cost, highly 431 

repeatable processes such as stamping or laser cutting, the latter having been previously 432 

demonstrated (33). Ceramic parts can be cast in batches, though firing or curing time may 433 

produce a bottleneck. Parts made from natural materials such as wood can be made with 434 

subtractive laser cutting or milling, the latter providing the option for true 2.5D or full 3D 435 

geometric feature capabilities. Concerns here include material waste as well as undesired 436 

anisotropy of the stock material from which parts are made.    437 

 Once parts are produced, they need to be joined. The appeal of using mechanical fasteners 438 

is high structural efficiency, good repeatability, and the potential for reversibility. However, 439 

parasitic joint mass is also a consequence. Both node and fastener mass are considered parasitic 440 

due to the effective lattice behavior being governed by beam properties, as described previously. 441 

While this effectively makes the joints disappear structurally, their mass is still included in 442 
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calculating lattice mass and density. Therefore, joints should be as small as possible while still 443 

achieving the needed mechanical performance to ensure proper lattice behavior. This is an 444 

inherent tradeoff of discrete assembly. The other constraint is related to scale. As global lattice 445 

scale reduces from meters to centimeters and millimeters, joints become difficult to realize with 446 

COTS fasteners and may require more customized solutions. In addition, at these scales, it is 447 

possible to manufacture comparable lattice with aforementioned additive processes. At small 448 

scales, the benefits of additive manufacturing can outweigh the benefits of discrete assembly and 449 

should be considered against cost and performance criteria.  450 

 Full-scale applications typically require additional steps for implementation, including 451 

interfaces with more traditional hardware systems as well as external stimuli. For example, in 452 

Figure S9, we show an experimental ground vehicle made with the rigid discrete lattice presented 453 

here. The lattice structures discussed here are open cell, which enables great sparsity and low 454 

density. Partial or closed surfaces may be desired to receive hydro or aerodynamic pressures. For 455 

example, discrete lattices have been demonstrated previously as lightweight, morphing 456 

aerostructures. Skins, or outer mold lines, are achieved with discrete strips (34) or panels (35). In 457 

both cases, the discrete nature of the skin is designed to mirror that of the lattice, both in 458 

geometric pitch and characteristic length. Structurally, these skins must transfer pressure loads to 459 

the lattice and not deform plastically or fail in tension, but they do not act as a traditional 460 

monocoque structure, thus allowing them to be discretized. Skin material and thickness is then 461 

informed by these constraints, while seeking to minimize mass. Alternatively, in higher 462 

magnitude loading scenarios, more robust panels provide significant factors of safety, such as 463 

providing a walking surface on a 5m lattice bridge (26). In this case, a total of nine panels 464 

weighed roughly 10kg, while the lattice, made up of 156 voxels, weighed roughly 18kg. Thus, 465 

skin or surface elements can contribute significant mass and must be considered if the application 466 

is mass-critical, as many aerospace applications are.  467 

 While manual assembly has sufficiently high throughput for lab-based experiments (see 468 

Table S1), full-scale implementations with voxel counts over 102 will benefit greatly from 469 

automation. Stationary gantry platforms have been fitted with end effectors for voxel transport 470 

and bolting operations (36), and mobile robots have been implemented to perform similar 471 

operations while locomoting on the lattice as they construct it (37). Stationary systems promise 472 

high throughput for a bounded work envelope, while mobile robots can be parallelized and 473 

require no global positioning due to local alignment features, offering benefits of autonomy and 474 

reliability. Automation will be critical for producing these metamaterials and structures in large 475 

quantities envisioned for commercial applications.  476 
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 Finally, the scope of this paper is limited to homogeneous lattice types (subtleties of chiral 477 

architecture aside). Due to the consistent assembly method across part types, heterogeneous 478 

lattices can be made with this approach just as easily. Heterogeneous metamaterials have been 479 

shown to have exponential combinatorial possibilities (38), as well as the ability to realize any 480 

arbitrary elasticity tensor (39). Next steps for this work include harnessing spatial programming to 481 

achieve diverse anisotropy with simple design rules applied to our finite set of parts.  482 

 By offering a simple yet diverse set of parts unified with a consistent assembly method, 483 

this work represents a significant step in lowing the barrier for entry to realizing the promise of 484 

metamaterials. Combined with hierarchical design tools and assembly automation, we foresee this 485 

research enabling emerging fields such as soft robotics, responsive aero and hydrodynamic 486 

structures, and user-defined programmable materials, thereby further merging the digital and 487 

physical sides of future engineering systems.  488 

 489 

  490 
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Materials and Methods 491 

 Injection molding and assembly: Part production and assembly details are shown in 492 

Figure S1. Parts were injection molded by Protolabs, a US-based CNC manufacturing service 493 

provider. To ensure low cost, parts were designed to be two-part moldable. While this is simple 494 

for the majority of the part, the inner-voxel tab and hole at 45 degrees required a custom designed 495 

opening, shown in Figure S1C. Parts were assembled with 3/32” diameter blind aluminum rivets, 496 

utilizing a pneumatic rivet gun. The voxel assembly process is shown in Figure S1D. Voxel to 497 

voxel joints used the same process, shown in Figure S1E. Metrics for assembly time and 498 

throughput are shown in Table S1.  499 

 Mechanical characterization: Small-scale tests to validate continuum behavior as shown 500 

in Figure 1 were performed on an Instron 4411 testing machine using a 5kN load cell. Lattice 501 

specimens for each type were tested in cubes of side length voxel count n = 1, 2, 3, and 4. Lattice 502 

tests were performed on an Instron 5985 testing machine using a 250 kN load cell. Specimens of a 503 

given lattice type were loaded to the same amount of relative strain, at an extension rate of 10 504 

mm/min. Both machines use Bluehill 2 software for data acquisition. Video was recorded using a 505 

Nikon D3400 camera. Video was analyzed using Tracker, an open source video analysis and 506 

modeling tool (https://physlets.org/tracker/). 507 

 Numerical modeling: Fully meshed FEA simulations were used to check stress 508 

concentrations, but these typically incur higher computational costs Figures S5-6), and therefore 509 

were limited to under 10 voxels. A static stress analysis solver based on NASTRAN was used in 510 

Autodesk Fusion 360’s built in simulation environment. Larger lattice models were simulated 511 

using the Frame3DD library, a freely available numerical solver implementing Timoshenko beam 512 

elements (http://frame3dd.sourceforge.net/) along with a python interface, PyFrame3DD 513 

(https://github.com/WISDEM/pyFrame3DD). For analysis of asymptotic behavior of large lattices 514 

Frame3DD was modified to incorporate sparse matrix math using CHOLMOD from the 515 

SuiteSparse library (https://github.com/DrTimothyAldenDavis/SuiteSparse). Python utilities were 516 

written to automate creating nodes, edges, faces and voxels, as well as applying loadings and 517 

boundary conditions using spatial rules (e.g. fixing the bottom of a lattice and applying forcing to 518 

the top nodes).  These simulations were validated against a commercial software with comparable 519 

sparse matrix solving capabilities (Oasys GSA v9.0).  520 

  521 

 522 

 523 

 524 

https://physlets.org/tracker/
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Figure S 1: Production of lattice by injection molding and assembly.  2 
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Video S2: Compliant lattice type 17 

Video S3: Auxetic lattice type 18 

Video S4: Chiral lattice type 19 
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Part geometry, molding, assembly 22 

 23 

 24 

Figure S 1: Production of lattice by injection molding and assembly. A) Injection molding gate 25 

layout and resulting material flow and knit line location, B) Characterization of different beam 26 

groups based on relative locations on part, C) Two part mold, with cavity below and core above, 27 

and a detailed view of the 45 degree angle hole, which is achieved by splitting the feature 28 

between core and cavity, D) Voxel assembly sequence. Faces are joined together one at a time, 29 

using rivets at the corners. A voxel consists of six faces and twelve rivets. E) Neighboring voxels 30 

are joined with the same method, rivet gun shown entering opposite face, at slight angle due to 31 

interference with inter-voxel joint node of entering face.   32 

33 
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 We characterized the as-molded properties of the GFRP material, where the elastic 34 

modulus and yield strength vary based on the location of the gate and resulting knit lines. For 35 

injection molded FRP, fiber concentration reduces with distance from the gate. The highest 36 

concentration is around the gate, resulting in relatively high stiffness, but residual thermal and 37 

mechanical stress from the injection process cause a relatively lower yield strength. At the end of 38 

the flow, knit lines can result in around 50% yield strength reduction (27), in addition to reduced 39 

elastic modulus owing to distance from the gate. Therefore, controlling the location of these 40 

features is important. We want to avoid having the gate or knit line occur near the middle of the 41 

beam, where stress will be magnified during beam buckling induced strain. We also want to avoid 42 

having the end knit line occur on the inter- or inner-voxel nodes. Aside from operational stresses, 43 

during the voxel construction the outward force of the rivet expanding from actuation causes 44 

circumferential stress in the node area which can result in rupture along knit lines.  45 

 The resulting gate and knit line locations are shown for the rigid part type in Figure S1A, 46 

with contours indicating the flow location at increasing time steps. To characterize the range of 47 

as-molded material properties, specimens from each beam group were extracted from the faces 48 

and tested in uniaxial tension until failure, and the resulting elastic modulus and yield strength 49 

were calculated, as shown in Figure S1B. Our findings confirm several key aspects of part 50 

production. Beam group 1, which is closest to the gate, has high fiber content, thus a high elastic 51 

modulus, but has lower yield strength due to residual stress caused by gate proximity. Beam 52 

groups 2 and 3 have flows that move continuously from one end to the other, which promotes 53 

axial fiber alignment, giving a higher elastic modulus and yield strength. The last beam group has 54 

the lowest modulus, due to being at the end of the flow front, and the lowest strength, due to knit 55 

line proximity. 56 

 57 

 58 

 59 

 60 

 61 

62 
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Discrete lattice load path analysis 63 

 64 

 65 

 66 

Figure S 2: Load paths in rigid Cuboct lattice. A) 2x2x2 cube under uniaxial tension in Z 67 

direction, B) sample voxel under tension in Z direction, C) detail of corner joint showing internal 68 

load transfer, D) 2x2x2 cube under uniaxial compression in Z direction, E) sample voxel under 69 

compression in Z direction, F) detail of corner joint showing internal load transfer, G) 70 

illustration of cross-axis load transfer at joints, showing XZ and YZ planes in uniform tension, H) 71 

mixed compression and tension, and I) uniform compression.  72 

73 
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The rigid cuboct is taken as the “base” unit, which is used for describing system architecture 74 

such as critical dimensions and relative structural performance metrics. Figure S2A shows a 75 

2x2x2 cube loaded in tension in the positive Z direction. We can observe that in-plane beams 76 

parallel to the loading direction (XY and YZ planes) go into tension, which results in the out of 77 

plane members (XY plane) go into compression. Assuming periodic boundary conditions, a single 78 

representative voxel is shown in Figure S2B, where external loading and reaction forces at 79 

outward facing nodes are shown. XY plane nodes logically go into tension on the top and bottom 80 

faces of the voxel. XZ and YZ faces have combined tension and compression reaction forces at 81 

the nodes, while all beams are in tension. Due to the construction employed, in-plane face loads 82 

are transferred through adjacent nodes to the outward face, which is normal to the load path 83 

direction, as shown in Figure S2C. At the junction of four, in-plane voxels, there are 3 possible 84 

load paths: all compression, all tension, or mixed tension and compression (Figure S2G-I). All 85 

compression is resolved through contact pressure of the node area, which helps in reducing the 86 

resulting pressure magnitude. All tension loads transfer from in plane beams, through inner-voxel 87 

joints, then through rivets which are parallel to the load path but fixtured to faces which are 88 

normal to the load path. Combined loads have overlapping, orthogonal load paths. 89 

90 
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Beam slenderness and relative density 91 

 92 

Figure S 3: Relationship between compression member slenderness ratio, failure mode, and 93 

resulting lattice relative density. Beams above the critical slenderness ratio (l/k = 29.5) fail by 94 

elastic buckling, beams below fail by plastic buckling. Relative densities above 30% are invalid 95 

for cellular theory to apply.  96 

 Here we discuss yield strength as the point at which initial beam failure occurs. The 97 

mechanism for this failure is important for understanding how the discrete lattice system behaves 98 

as a continuum lattice. As shown in Figure S 2, external loads are resolved internally as beam 99 

tension and compression. Beam tensile failure is determined by constituent material and beam 100 

cross sectional area, with the critical force  .  101 

 Beams in compression fail in different ways depending on their slenderness ratio, defined 102 

as  effective length over radius of gyration, . This is used to describe three 103 
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compression member types in terms of their failure modes: short, intermediate, and long. As 104 

cellular solid theory is only applicable at relative densities under 30%, we limit our analysis to 105 

beams with slenderness ratios above 4:1 (see Figure S 3). For sparse Euler buckling is the elastic 106 

stability limit, and is applicable to long members, but as slenderness ratio goes to zero, Euler 107 

buckling predictions go to infinity. Therefore, the Johnson parabola curve considers material yield 108 

strain (σy/E), the strain at which the material ceases to be linearly elastic [30], in calculating the 109 

inelastic stability limit. The transition between long and intermediate occurs at the critical 110 

slenderness ratio, which can be calculated using material and beam geometric properties (40).    111 

 Our material is a GFRP with an elastic modulus E = 2 GPa and yield strength σy = 107 112 

MPa, and we can calculate critical slenderness using  = 19.21. Based on our 113 

part geometry, we find our beam slenderness to be ~29.5. Therefore, our beams should fail based 114 

on Euler buckling at a critical load Fcr = 70N. Using the yield strength values from Figure S 7A, 115 

we can determine the experimental value for critical beam load by dividing the global peak load 116 

(7.8 kN) by the cross sectional voxel count (16), resulting in 487.5 N/voxel, 121.9 N/node, which 117 

is carried by two beams at 45 degree angles, giving a beam load of 86N.    118 

119 
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Free body diagrams of each lattice type 120 

 121 

Figure S 4: Free body diagram of unit cell for each lattice type. A) Rigid lattice type resolves 122 

external loads through axial member forces, in this case shown as compression and resulting 123 

member buckling, B) Compliant lattice type resolves external loads through axial shortening 124 

combined with a small amount of bending, producing little to no lateral reaction forces at nodes, 125 

C) Auxetic lattice type deforms through bending at the joints, and can be considered a pseudo 126 

rigid body model as shown to the side, D) Chiral lattice type deforms by bending and rotation in 127 

side faces, and nearly pure rotation in top face, thus producing chiral response.  128 

129 
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Numerical Modeling Comparison 130 

 131 

Figure S 5: Comparison of numerical models for a single rigid cuboct voxel. A) NASTRAN 132 

(built in FEA for commercial CAD/CAE software, Autodesk Fusion), B) Beam model with 133 

additional model detail of joints, C) Theoretical beam model. 134 

 135 
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 136 

Figure S 6: Comparison of numerical modeling methods and experimental results. We see good 137 

agreement between experiment, fully meshed FEA (NASTRAN), as-built beam model, and 138 

theoretical beam model, in terms of deformed shape to same applied strain, and von mises stress 139 

distribution, noting some concentrations visible in simplified model.  140 

 141 

 142 
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Experimental results  143 

 144 

 145 

Figure S 7: Experimental results. A) Rigid, B) Compliant, C) Auxetic, D) Chiral.  146 

147 



Science Advances                                               Manuscript Template                                                                           Page 12 of 14 

 

 148 

Table S1: Assembly metrics 149 

Specimen cube  

voxel width n 

Total 

voxels 

Total Rivets Avg 

rivets/voxel 

Time/ 

voxel 

(min) 

Total 

time 

(min) 

cm3/hr g/hr 

1 1 12 12 1.5 1.5 16,876 500 

2 8 144 18 2.25 18 11,250 333 

3 27 540 20 2.5 67.5 10,125 300 

4 64 1344 21 2.625 168 9,643 285 

5*  125 2700 21.6 2.7 337.5 9,375 277 

10* 1000 22800 22.8 2.85 2850 8,882 263 

N* N3 N3*12 + 

[N2*(3(N-1))]*4 

24 3 3*N3 8,440 250 

* = projected (not built), Avg Rivet time = 7.5s, Voxel mass = 12.5g, Voxel vol = 422 cm3 
150 

 151 

 152 

 153 
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 Experimental lattice specimens 154 

   155 

Figure S 8: As-built lattice specimens. A) Rigid, B) Compliant, C) Auxetic, D) Chiral. Scale bar: 156 

75mm. 157 

158 
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 159 

Macro-scale structural application 160 

 161 

 162 

Figure S 9: Large scale Application of discretely assembled mechanical metamaterial as a car 163 

frame. A) Mass produced parts, B) Assembled layer, C) Completed frame without subsystems, D) 164 

Supermileage vehicle in operation. Scale bars A) 75mm, B) 225mm, C) 225mm, D) 150mm. 165 

Image credit: Kohshi Katoh, Toyota Motor Corporation.  166 

 167 


	discretely assembled mechanical metamaterials_060120
	discretely assembled mechanical metamaterials_supplementary_060120

